

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página 1/1

RESUMEN TRABAJO DE GRADO

AUTOR(ES):

NOMBRE(S): ALEJANDRA APELLIDOS: CACUA SILVA

NOMBRE(S): JHON JAIRO APELLIDOS: GELVEZ BECERRA

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: TECNOLOGÍA QUÍMICA

DIRECTOR:

NOMBRE(S): DORA CECILIA **APELLIDOS**: RODRIGUEZ ORDOÑEZ

TÍTULO DEL TRABAJO (TESIS): OBTENCIÓN DE BIOETANOL A PARTIR DE LA CASCARILLA DE ARROZ (*Oryza sativa*) PRETRATADA CON ÁLCALIS Y SU POSTERIOR HIDRÓLISIS ENZIMÁTICA CON CELULASA ÁCIDA (CFB3S)

RESUMEN

Este trabajo de grado consistió en la obtención de bioetanol a escala de laboratorio y a escala piloto, el cual se obtuvo a partir de las etapas de pretratamiento químico (con solución de hidróxido de sodio al 2,00%p/v), hidrólisis enzimática con celulasa ácida (CFB3S), fermentación de los azúcares obtenidos en la hidrólisis utilizando Saccharomyces cerevisiae, destilación simple (en la escala de laboratorio) y destilación fraccionada (en la escala piloto). Además, para la obtención de Bioetanol se realizó un diseño factorial A*B (2*3), (un factor A cualitativo "tipo de pretratamiento químico", con dos niveles y un factor B cuantitativo "volumen de enzima", con tres niveles) del cual se realizó un análisis de varianza (ANOVA), pruebas de Tukey para la comparación de los tratamientos y ajustes de curva de respuesta, utilizando el software estadístico R Project, versión 3.2.2.

PALABRAS CLAVE: Hidrólisis enzimática, pretratamiento químico, azucares reductores totales, fermentación.

CARACTERÍSTICAS:

PÁGINAS: 159 PLANOS: ____ ILUSTRACIONES: CD ROOM: 1 ____

	Elaboró		Revisó		Aprobó
Equipo Operativo del Proceso		Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

COPIA NO CONTROLADA

OBTENCIÓN DE BIOETANOL A PARTIR DE LA CASCARILLA DE ARROZ (*Oryza sativa*) PRETRATADA CON ÁLCALIS Y SU POSTERIOR HIDRÓLISIS ENZIMÁTICA CON CELULASA ÁCIDA (CFB3S)

ALEJANDRA CACUA SILVA JHON JAIRO GELVEZ BECERRA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE TECNOLOGÍA QUÍMICA

SAN JOSÉ DE CÚCUTA

2017

OBTENCIÓN DE BIOETANOL A PARTIR DE LA CASCARILLA DE ARROZ (*Oryza sativa*) PRETRATADA CON ÁLCALIS Y SU POSTERIOR HIDRÓLISIS ENZIMÁTICA CON CELULASA ÁCIDA (CFB3S)

ALEJANDRA CACUA SILVA JHON JAIRO GELVEZ BECERRA

Trabajo de grado presentado como requisito para optar al título de Tecnólogo Químico

Directora

DORA CECILIA RODRIGUEZ ORDOÑEZ

Química, M.Sc.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE TECNOLOGÍA QUÍMICA

SAN JOSÉ DE CÚCUTA

2017

ACTA DE SUSTENTACION DE UN TRABAJO DE GRADO

FECHA:

07 DE FEBRERO DE 2017

HORA: 4:00 p. m.

LUGAR:

AUDITORIO CIENCIAS BASICAS — UFPS

PLAN DE ESTUDIOS:

TECNOLOGIA QUIMICA

TITULO DE LA TESIS:

"OBTENCIÓN DE BIOETANOL A PARTIR DE LA CASCARILLA DE ARROZ (Oriza sativa) PRETRATADA CON ÁLCALIS Y SU POSTERIOR

HIDRÓLISIS ENZIMÁTICA CON CELULASA ÁCIDA (CFB3S)".

JURADOS:

JUAN MARIA TORRES CAICEDO LUIS ALFONSO RIVERA MORENO JOHN WILMER PARRA LLANOS

DIRECTOR:

DORA CECILIA RODRIGUEZ ORDOÑEZ.

NOMBRE DE LOS ESTUDIANTES:

CODIGO

CALIFICACION

ALEJANDRA CACUA SILVA

1930175

LETRA

JHON JAIRO GELVEZ BECERRA

1930173

NUMERO 4,6 4,6

CUATRO, SEIS CUATRO, SEIS

MERITORIA

FIRMA DE LOS JURADOS:

JUAN MARIA TORRES CAIGEDO

LUIS ALFONSO RIVERA MORENO

John Parra LL.

JOHN WILMER PARRA LLANOS

Vo. Bo.

IUAN MARIA TORRES CAICEDO Coordinador Comité Curricular

Betty M.

Av. Gran Colombia No. 12E-96 Colsag Teléfono: 5776655

Cúcuta - Colombia

Contenido

	pág.
Introducción	18
1. Problema	20
1.1 Título	20
1.2 Planteamiento del Problema	20
1.3 Formulación del Problema	21
1.4 Justificación	22
1.5 Objetivos	23
1.5.1 Objetivo general	23
1.5.2 Objetivos específicos	24
2. Marco Referencial	25
2.1 Antecedentes	25
2.2 Marco Teórico	29
2.2.1 El arroz	29
2.2.1.1 Morfología de la planta de arroz.	30
2.2.2 Cascarilla de arroz (CA)	31
2.2.2.1 Composición de la cascarilla de arroz (CA)	32
2.2.2.2 Composición de la cascarilla de arroz de Colombia	36
2.2.3 Carbohidratos	37
2.2.3.1 Tipos de Carbohidratos	37
2.2.4 Bioetanol	40
2.2.4.1 Producción de etanol como combustible	41
2.2.4.2 El alcohol como combustible	41

2.2.5 Pretratamiento alcalino de materiales lignocelulósicos	42
2.2.6 Hidrólisis enzimática	43
2.2.7 Enzimas	45
2.2.7.1 El centro activo	46
2.2.7.2 Complejo enzima – sustrato	47
2.2.7.3 Especificidad de la enzima	48
2.2.7.4 Enzimas comerciales	49
2.2.8 Cuantificación de azúcares reductores totales por método DNS (3,5-	
dinitrosalicílico)	51
2.2.9 Proceso de fermentación	52
2.2.9.1 Clasificación de los procesos de fermentación	52
2.2.9.2. Rutas bioquímicas de las fermentaciones	53
2.2.9.3 Fermentación alcohólica	56
2.2.10 Conteo de células en la cámara de Neubauer	57
2.3 Marco Conceptual	58
2.4 Marco Legal	59
3. Diseño Metodológico	60
3.1 Tipo de investigación	60
3.2 Población y Muestra	60
3.3 Preparación de Soluciones	60
3.3.1 Hidróxido de sodio al 2,00% p/v	60
3.3.2 Solución hipoclorito de sodio 6,25% p/v	60
3.3.3 Solución stock de glucosa anhidra 4,000 g/L	61
3.3.4 Reactivo DNS	61

3.3.5 Buffer citrato de sodio pH 5,00		61
3.4 Diseño Factorial A*B		
3.4.1 Hipótesis		63
3.5 Desarrollo Experimental		64
3.5.1 Muestreo de la cascarilla de arroz (CA)		64
3.5.2 Determinación del porcentaje de humedad y ceniza	s en la cascarilla de arroz	
(CA)		65
3.5.3 Obtención de bioetanol a partir de CA a escala de l	aboratorio	66
3.5.3.1 Preparación de la muestra (CA)		66
3.5.3.2 Pretratamiento de la CA (deslignificación)		66
3.5.3.3 Secado y molienda		69
3.5.3.4 Hidrólisis enzimática		71
3.5.3.5 Efecto que podrían producir la agitación, la ter	mperatura, el pretratamiento y	
la adición de enzima, en la producción de azúcares rec	ductores totales (ART)	72
3.5.3.6 Análisis de Azúcares Reductores Totales por e	el Método de DNS	73
3.5.3.7 Análisis de Varianza (ANOVA)		76
3.5.3.8 Fermentación alcohólica de los jarabes glucos	ados	76
3.5.3.9 Destilación del alcohol		81
3.5.3.10 Determinación de la concentración de etanol		82
3.5.4 Obtención de bioetanol a partir de la CA a escala p	iloto	82
3.5.4.1 Pretratamiento químico		82
3.5.4.2 Hidrólisis enzimática		83
3.5.4.3 Fermentación		84
3.5.4.4 Destilación fraccionada		86

	3.5.4.5 Determinación de la concentración de etanol en el destilado	90		
4. Resultados y Discusión				
	4.1 Determinación del porcentaje de humedad y cenizas presentes en la CA	91		
	4.2 Obtención de Bioetanol a Partir de CA a Escala de Laboratorio	92		
	4.2.1 Pretratamiento de la muestra (deslignificación)	92		
	4.2.2. Secado y molienda	92		
	4.2.3. Hidrólisis enzimática	92		
	4.2.4 Determinación de la concentración de ART por espectroscopia UV/vis	93		
	4.2.5. Análisis estadístico de los datos	97		
	4.2.5.1 Hipótesis de investigación	98		
	4.2.5.2 Diseño del tratamiento	98		
	4.2.5.3 Desarrollo del experimento	98		
	4.2.5.4 Análisis de varianza (ANOVA)	100		
	4.2.5.5 Ajuste de curva de respuesta para el factor cuantitativo	102		
	4.2.5.6 Método de Tukey para todas las comparaciones por pares	109		
	4.2.6 Efecto que podrían producir la agitación, la temperatura, el pretratamiento y la			
	adición de enzima, en la producción de ART	113		
	4.2.7 Fermentación alcohólica de los jarabes glucosados a escala de laboratorio	117		
	4.2.8 Destilación y determinación del contenido de alcohol	120		
	4.3 Proceso de obtención de bioetanol a partir de la CA a escala piloto	120		
	5. Conclusiones	125		
	6. Recomendaciones	128		
	Referencias Bibliográficas	129		
	Anexos	136		