

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER DIVISIÓN DE BIBLIOTECA EDUARDO COTE LAMUS RESUMEN TESIS DE GRADO

AUTOR (ES):
NOMBRE (S): <u>ANDREA LIZETH</u> APELLIDO (S): <u>BALLESTEROS ARAQUE</u>
FACULTAD: INGENIERÍA
PLAN DE ESTUDIOS: TECNOLOGÍA QUÍMICA
DIRECTOR:
NOMBRE (S): JAVIER MAURICIO APELLIDO (S): PABÓN MORA
TÍTULO DE LA TESIS: ESTANDARIZACIÓN DEL MÉTODO PARA LA
DETERMINACIÓN DE MERCURIO EN MATRIZ DE AGUA UTILIZANDO LA
TÉCNICA DE ESPECTROSCOPIA DE ABSORCIÓN ATÓMICA EN VAPOR FRÍO

RESUMEN

La estandarización del método para la determinación de mercurio en aguas por medio de la espectroscopia de absorción atómica en vapor frio en la empresa PSL PROANÁLISIS LTDA en la ciudad de Bucaramanga, se realiza para obtener la acreditación del método y brindar a la sociedad un servicio seguro que garantice la confiabilidad de los resultados.

La realización de los ensayos en la determinación de mercurio se basó en el método EPA 245.1, revisión 3.0, determinación de mercurio en agua por espectrometría de absorción atómica en vapor frío.

Se realizó la estimación de la precisión y exactitud del método en las diferentes matrices de agua: agua superficial, agua residual industrial, agua residual doméstica, agua subterránea, agua potable.

Palabras claves: Estandarización, mercurio, espectroscopia absorción atómica

CARACTE	RÍSTIC	AS				
- (
PÁGINAS	121	PLANOS	ILUSTRACIONES	CD-ROM	1	

ESTANDARIZACIÓN DEL MÉTODO PARA LA DETERMINACIÓN DE MERCURIO EN MATRIZ DE AGUA UTILIZANDO LA TÉCNICA DE ESPECTROSCOPIA DE ABSORCIÓN ATÓMICA EN VAPOR FRÍO

ANDREA LIZETH BALLESTEROS ARAQUE

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍAS PLAN DE ESTUDIOS DE TECNOLOGÍA QUÍMICA SAN JOSÉ DE CÚCUTA 2014

ESTANDARIZACIÓN DEL MÉTODO PARA LA DETERMINACIÓN DE MERCURIO EN MATRIZ DE AGUA UTILIZANDO LA TÉCNICA DE ESPECTROSCOPIA DE ABSORCIÓN ATÓMICA EN VAPOR FRÍO

ANDREA LIZETH BALLESTEROS ARAQUE

Trabajo de grado presentado con el fin de optar el título de Tecnólogo Químico

Director
JAVIER MAURICIO PABÓN MORA
QUÍMICO

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍAS PLAN DE ESTUDIOS DE TECNOLOGÍA QUÍMICA SAN JOSÉ DE CÚCUTA 2014

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

ACTA DE SUSTENTACION DE UN TRABAJO DE GRADO

FECHA:

11 DE NOVIEMBRE DE 2014

HORA: 4:00 p.m.

LUGAR:

SALA 3 – TERCER PISO EDIFICIO CREAD - UFPS

PLAN DE ESTUDIOS:

TECNOLOGIA QUIMICA

TITULO DE LA TESIS:

"ESTANDARIZACION DEL METODO PARA LA DETERMINACION DE MERCURIO EN MATRIZ DE AGUA UTILIZANDO LA TECNICA ESPECTROSCOPIA DE ABSORCION ATOMICA EN VAPOR FRIO".

JURADOS:

EDWIN ALBERTO MURILLO RUIZ

RICARDO LEON MORA BASTO

DORA CECILIA RODRIGUEZ ORDOÑEZ

DIRECTOR:

JAVIER MAURICIO PABON MORA.

NOMBRE DE LOS ESTUDIANTES:

CODIGO

CALIFICACION

4,5

LETRA

ANDREA LIZETH BALLESTEROS ARAQUE

1930096

NUMERO CUATRO, CINCO

MERITORIA

FIRMA DE LOS JURADOS:

EDWIN A. MURILLO RUIZ EDWIN ALBERTO MURILLO RUIZ

RICARDO LEON MORA BASTO

Doro C. Fodrgues O DORA CECILIA RODRIGUEZ ORDOÑEZ

Vo. Bo.

Betty M.

CAICEDO JUAN MARIA TORRES Coordinador Comité Curricular

DEDICATORIA

A Dios, por el amor reflejado a lo largo de todo este tiempo y por colmarme de paciencia para alcanzar esta meta.

A mi madre Luz Amparo Araque García, por su gran apoyo, comprensión y protección interminables en todos estos años y porque sin su ejemplo de lucha no hubiese llegado hasta aquí.

A mi tía Nohora Nelly Buitrago por que como si fuera mi madre, me ha brindado su amor y su apoyo infinito.

A mi Padre, que desde el cielo debe estar celebrando conmigo este hecho, a mi hermano y mi familia por su confianza y apoyo firme.

AGRADECIMIENTOS

A todo el equipo de trabajo del laboratorio ambiental PSL PROANÁLISIS LTDA por permitirme hacer parte de ellos, especialmente al gerente Amleto León Téllez y la subgerente Liliana Rincón por darme la oportunidad y la confianza de trabajar en este proyecto.

Al Químico Javier Mauricio Pabón director de este trabajo por compartirme sus conocimientos en el laboratorio, por su paciencia y por su tiempo para ayudarme a culminar uno de mis más grandes objetivos.

A la Universidad Francisco de Paula Santander y en especial a los profesores del plan de estudios de Tecnología química por sus enseñanzas y porque me motivaron a emprender grandes cosas como este proyecto de grado.

A todas las personas que hicieron posible la realización y culminación del proyecto el mayor reconocimiento, pues su actitud positiva y su cariño me han permitido seguir adelante. Muchas gracias y mil bendiciones a todos por su apoyo.

CONTENIDO

	pág.
INTRODUCCIÓN	15
1. PROBLEMA	17
1.1 TÍTULO	17
1.2 PLANTEAMIENTO DEL PROBLEMA	17
1.3 FORMULACIÓN DEL PROBLEMA	18
1.4 JUSTIFICACIÓN	18
1.5 OBJETIVOS	18
1.5.1 Objetivo general	18
1.5.2 Objetivos específicos.	19
1.6 ALCANCES Y LIMITACIONES	19
1.6.1 Alcances	19
1.6.2 Limitaciones	19
2. MARCO REFERENCIAL	20
2.1 ANTECEDENTES	20
2.1.1 Antecedentes bibliográficos.	20
2.1.2 Antecedentes históricos.	22
2.2 MARCO TEÓRICO	23
2.2.1 Generalidades de mercurio	23
2.2.2. Aplicaciones industriales del mercurio	24
2.2.3 Espectroscopia de absorción atómica	25
2.2.3.1 Espectrómetro de absorción atómica con cámara de grafito	27

2.2.3.2. Espectrómetro de absorción atómica de llama	28
2.2.3.3. Técnica de vapor frio	28
2.2.4. Atributos del método a estandarizar	29
2.2.4.1 Rango lineal de trabajo	29
2.2.4.2. Límite de detección del método (LDM)	33
2.2.4.3 Límite de cuantificación del método (LCM)	33
2.2.4.4 Sensibilidad	33
2.2.4.5 Precisión	34
2.2.4.6 Rango relativo entre duplicados (RRD).	34
2.2.4.7 Repetibilidad	35
2.2.4.8 Reproducibilidad	35
2.2.4.9 Exactitud	35
2.2.4.10 Incertidumbre en las mediciones.	36
2.3. MARCO CONCEPTUAL	39
2.4 MARCO LEGAL	44
3. DISEÑO METODOLÓGICO	45
3.1 TIPO DE INVESTIGACIÓN	45
3.2 POBLACIÓN Y MUESTRA	45
3.2.1 Población	45
3.2.2 Muestra	45
3.3 INSTRUMENTOS Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN	45
3.4 ANÁLISIS DE LA INFORMACIÓN	47
3.4.1 Etapa de pre-estandarización	48

3.4.2 Etapa de estandarización	52
4. RESULTADOS Y DISCUSIÓN	62
4.1. ETAPA DE PRE-ESTANDARIZACIÓN	62
4.1.1 Acondicionamiento y optimización del método	62
4.1.2. Rango lineal y curva de RINGBOM	66
4.1.3 Estimación de la curva de calibración promedio y su linealidad.	68
4.1.4 Sensibilidad del método	69
4.1.5. Estimación del límite de detección del método y del límite de cuantificación del método.	69
4.2. ETAPA DE ESTANDARIZACIÓN	72
4.2.1. Análisis de lotes.	72
4.2.2 Exactitud del método	74
4.2.3 Precisión del método	78
4.3. ESTÁNDAR DE CONTROL DEL MÉTODO	80
4.4. ESTÁNDAR DE CHEQUEO DEL MÉTODO	82
5. ESTIMACIÓN DE LA INCERTIDUMBRE EN LAS MEDICIONES	83
5.1. ESTABLECIMIENTO DEL MENSURANDO Y MODELO MATEMÁTICO	83
5.2. IDENTIFICACIONES DE LOS COMPONENTES DE INCERTIDUMBRE	84
5.3. CUANTIFICACIÓN DE LOS COMPONENTES DE INCERTIDUMBRE.	84
6. CONCLUSIONES	86
7. RECOMENDACIONES	88
BIBLIOGRAFÍA	89
ANEXOS	95