

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER BIBLIOTECA EDUARDO COTE LAMUS

RESUMEN – TESIS DE GRADO

AUTORES: EULER LEONARDO ARIAS PEREZ
YORDAN FABIAN MANTILLA MORENO
FACULTAD: INGENIERIA
PLAN DE ESTUDIOS: INGENIERIA ELECTRONICA
DIRECTOR: DIEGO FERNANADO FEGED VELEZ
TITULO DE LA TESIS: AUTOMATIZACION DEL SISTEMA DESHOLLINADOR DE CALDERA DE LA CENTRAL TERMICA DE TASAJERO
RESUMEN:
En el siguiente documento se mostrara los pasos que se requiere para la automatización del sistema deshollinador de caldera de la central termica de Tasajero, en la búsqueda de mejorar el desarrollo de procesos industriales se han implementado nuevas herramientas basadas en aplicaciones de software y hardware de automatizacion.
CARACTERISTICAS:

PAGINAS: 180 PLANOS: ILUSTRACIONES: CD-ROM: 1

AUTOMATIZACION DEL SISTEMA DESHOLLINADOR DE CALDERA DE LA CENTRAL TERMICA DE TASAJERO

EULER LEONARDO ARIAS PEREZ YORDAN FABIAN MANTILLA MORENO

UNIVERSIDAD FRANCISCO DE PAULA SANTANTANDER FACULTAD DE INGENIERIA
PLAN DE ESTUDIOS DE INGENIERIA ELECTRONICA SAN JOSE DE CUCUTA 2003

AUTOMATIZACION DEL SISTEMA DESHOLLINADOR DE CALDERA DE LA CENTRAL TERMICA DE TASAJERO

EULER LEONARDO ARIAS PEREZ YORDAN FABIAN MANTILLA MORENO

Proyecto de grado presentado como requisito para optar al titulo de INGENIERIA ELECTRONICA

Director
DIEGO FERNANADO FEGED VELEZ
Ingeniero Electrónico

UNIVERSIDAD FRANCISCO DE PAULA SANTANTANDER FACULTAD DE INGENIERIA PLAN DE ESTUDIOS DE INGENIERIA ELECTRONICA SAN JOSE DE CUCUTA 2003

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

FECHA:

Cúcuta, 3 de diciembre de 2003

HORA:

14:00

LUGAR:

Planta Termotasajero

Plan De estudio:

INGENIERÍA ELECTRÓNICA

Título de la tesis: "AUTOMATIZACIÓN

DEL

SISTEMA

DESHOLLINADOR DE CALDERA DE LA

CENTRAL

TÉRMICA DE

TASAJERO"

Jurados:

ALFONSO LÓPEZ BECERRA

JAVIER AUGUSTO BARROS LEAL JOSÉ ARMANDO BECERRA VARGAS

Director:

DIEGO FERNANDO FEGED VELEZ

Nombre de los estudiantes

Código

Calificación

Letra

Número

EULER LEONARDO ARIAS PÉREZ

160013

Cuatro, ocho

4,8

YORDAN FABIAN MANTILLA MORENO

160141

Cuatro, ocho

4,8

MERITORIA

JAVIER AUGUSTO BARROS LEAL

Vo. Bo. JOSÉ JOAQUÍN DUARTE GUATIBONZA Coordinador Comité Curricular

Ingeniería Electrónica

Jeannette C.

Avenida Gran Colombia No. 12e-96 B Colsag Tel. 5753515 - 5776655 Fax (97) 5771988 CUCUTA - COLOMBIA

A mis padres, Arnulfo Arias Diaz y Helda Cenovia Peréz de Arias, que con su esfuerzo, acompañamiento y ejemplo de lucha, Han hecho de mí un hombre de proyecciones y grandes valores

Euler Leonardo Arias

A mis padres, Eloina Moreno y Luis Eduardo Mantilla que con su constante apoyo y esfuerzo impartieron en mi las reglas básicas de la vida.

Yordan Fabian Mantilla Moreno

AGRADECIMIENTOS

Los autores del presente proyecto expresan sus agradecimientos a:

Como si fuese un reloj de maquinaria, en donde las piezas están totalmente sincronizadas y trabajan por un solo objetivo, así fue la participación de muchas personas en este proyecto. Se hacen cortas las letras para agradecer a quienes cada día aportaron parte de su tiempo y genialidad en la búsqueda de buenos resultados para este trabajo.

Un muy especial y cariñoso agradecimiento a nuestras familias quienes aportaron cuanto estuvo al alcance para mantenernos íntegros, vigorosos e incansables. A Maira Cecilia Gasca Mantilla y a Luz Carime Maldonado por ser tan pacientes, colaboradoras y estar siempre presentes a nuestro lado.

Al ingeniero Diego Fernando Feged por ser un guía profesional, espiritual y humano para los participantes del proyecto. Además su labor administrativa fue estupenda dándole viabilidad a las soluciones planteadas. Al señor Alvaro Omaña, quien con su gran experiencia impartió conocimiento y sabiduría. A los integrantes del departamento de regulación y control de Termotasajero S.A. E.S.P. Leivi Maldonado, Lorenzo Arias, Luis Carrillo, Orlando Carrillo, Henry López y Fernando Unda por su constante colaboración y la enseñanza de sus vivencias. A la Ingeniera Magda Moreno, a Ender Jaimes y Pedro Parra por su gran colaboración. A los Ingenieros Jaime Quintero y Pablo Lozada por creer en la capacidad y responsabilidad de los participantes de este proyecto.

A los ingenieros Javier Barros, Armando Becerra, Joaquín Duarte, Sergio Ivan Quintero, Julian Ferreira, Dinael Guevara y Eduard Galvis quienes fueron los orientadores y colaboradores durante las actividades que se desarrollaron y a los compañeros de universidad que con su apoyo nos permitieron mantenernos constantes en la realización del proyecto.

CONTENIDO

	Pág
INTRODUCCION	19
1. PRELIMINARES	20
1.1 TITULO	20
1.2 PLANTEAMIENTO DEL PROBLEMA	20
1.3 JUSTIFICACIÓN	21
1.4 OBJETIVOS	21
1.4.1 Objetivo general	21
1.4.2 Objetivos específicos	21
1.5 DISEÑO METODOLOGICO	22
1.5.1 Tipo de proyecto.	22
1.5.2 Recopilación de la información	22
1.5.3 Metodología.	23
1.6 ALCANCES Y LIMITACIONES	26
1.6.1 Alcances.	26

1.6.2 Limitaciones	26
2. OPERACIÓN DEL PROCESO DE DESHOLLINADO	27
2.1 DISTRIBUCIÓN DEL VAPOR	27
2.1.1 Subsistema caldera	28
2.1.2 Subsistema calentadores de aire	41
2.2 TABLERO DE CONTROL	46
2.3 CONDICIONES INICIALES DE OPERACIÓN	46
2.4 ESTRUCTURA DE LA CONEXIÓN ELECTRICA DESDE CAMPO AL TABLERO DE CONTROL	47
2.5 CLASIFICACION DE LAS SEÑALES QUE INTERVIENEN EN EL PROCESO DE DESHOLLINADO	47
3. HERRAMIENTAS DE AUTOMATIZACION	50
3.1 LOOKOUT	50
3.1.1 Objetos	51
3.1.2 Conexiones de objetos	54
3.1.3 Ambiente de servicios	54
3.1.4 Alarmas	55
3.1.5 Seguridad	57

3.1.6 Cuentas	57
3.2 S.L.C. 500 ALLEN BRADLEY	58
3.2.1 Arquitectura	59
3.2.2 Implementación de la lógica de control en rslogix500	63
4. ANALISIS	65
4.1 REQUERIMIENTOS	65
4.1.1 Control del sistema deshollinador	65
4.1.2 Estandarización	66
4.1.3 Necesidades	66
4.2 ARQUITECTURA DE LA APLICACIÓN	67
4.2.1 Diagrama de contexto	67
4.2.2 Diagrama de nivel 0	72
5. DISEÑO DE LA APLICACIÓN	81
5.1 ARQUITECTURA FÍSICA	81
5.1.1 Bornes	82
5.1.2 Controlador Lógico Secuencia SLC 5/01	90
5.1.3 Tarjeta interface 120VAC a 24VDC	100

5.1.4 Interfase de comunicaciones 1747-KE	111
5.1.5 Switch de accionamiento estación de reducción	111
5.1.6 Computador	111
5.2 ARQUITECTURA LOGICA	113
5.2.1 Aplicación para el SLC	113
5.2.2 Aplicación Lookout.	122
6. PRUEBAS PREVIAS	143
6.1 PRUEBAS DE HARDWARE	143
6.1.1 Panel de simulaciones.	144
6.2 PRUEBAS DE COMUNICACIONES	144
6.3 PRUEBAS DE SOFWARE	144
6.4 PRUEBAS GENERALES	144
6.4.1 Pruebas de laboratorio.	144
6.4.2 Pruebas en campo.	145
7. DOCUMENTACION	146
7.1 MANUAL DE OPERACIÓN	146
7.2 MANUAL DE MANTENIMIENTO	146

8. ANALISIS DE RESULTADOS Y PROMOCION	147
8.1 PROMOCION	147
9. RECURSOS Y FUENTES DE FINANACIACION	148
9.1 RECURSOS HUMANOS	148
9.2 RECURSOS DE FUNCIONAMIENTO	149
9.3 RECURSOS INSTITUCIONLES	150
9.4 FUENTES DE FINANCIACION	150
10. PRESUPUESTO FINAL	151
11. EVALUACION	152
11.1 EVALUACION CON EL CONTROL DEL TABLERO COPES VULCAN	152
11.2 EVALUACION CON OTROS MODELOS	152
11.2.1 Ventajas del Modelo Aplicado	152
12. CONCLUSIONES	154
13. RECOMENDACIONES	155
BIBLIOGRAFIA	156
ANEXOS	157