

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA

PROPIEDADES TÉRMICAS Y MICROESTRUCTURALES DE UN ACERO DE USO EN DUCTOS.

Por: Dr. GABRIEL PEÑA RODRIGUEZ. CÓDIGO 01416

TRABAJO PRESENTADO COMO REQUISITO PARA ASCENSO EN EL ESCALAFÓN DE LA CATEGORÍA ASOCIADO A LA CATEGORÍA TITULAR.

SAN JOSÉ DE CÚCUTA – NORTE DE SANTANDER

Diciembre de 2013

AGRADECIMIENTOS

En primer lugar, agradezco a Dios todo poderoso por permitirme culminar este trabajo de cambio de categoría.

Al Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, por el apoyo en las medidas experimentales usando técnica FA.

A la Universidad Nacional sede Bogotá, por su colaboración en los estudios usando MEB y DRX.

A mis colegas del departamento de física de la UFPS, y a toda la comunidad de la UFPS por su apoyo y confianza durante estos años.

LISTA DE FIGURAS.

Figura 1. Foto digital a) sección de la pared del tubo de acero; b) dado utilizado	10
para dar uniformidad a la superficies de la muestra; c) muestras ya preparadas; d)	
campana de vidrio.	
Figura 2. Patrones de difracción de rayos X para las muestras.	11
Figura 3. Micrografía de la microestructura de la muestra usando MEB por 500X.	12
a) fase perlítica, b) fase α -Fe y c) algunas inclusiones. (Usando 0.2% de solución	
nital por 10 segundos).	
Figura 4 Microestructura de la muestra usando MEB por 2000X, la micrografía	12
presenta las inclusiones sólidas c).	
Figura 5. Espectro del análisis cuantitativo elemental usando EDS-MEB para la	13
inclusión presentada en la figura 4.	
Figura 6. Distribución del tamaño de grano para la fase ferrítica (α -Fe) de la	14
muestra, usando MEB	
Figura 7. Distribución del tamaño de grano para las inclusiones sólidas presentadas	15
en las figuras 3 y 4.	
Figura 8. Diseño experimental de la técnica fotoacústica, utilizada en la	16
determinación experimental de propiedades térmicas de sólidos	
Figura 9. Corte transversal de la celda fotoacustica en configuración de transmisión de	17
calor, utilizada para medir la difusividad térmica de sólidos.	
Figura 10. Configuración de la celda fotoacústica para medir experimentalmente	18
ρ : 1, O-Ring de teflón; 2, líquido de referencia; 3, muestra; 4, detector; 5, ventana	
de cuarzo; 6, Cuerpo de la CFA.	
Figura 11. Amplitud de la señal FA vs frecuencia para las muestras objeto de	21
estudio, la curva indica el mejor ajuste de la ecuación (2) a los datos	
experimentales	
Figura 12. Amplitud de la señal FA vs frecuencia para la muestra de acero 1018, la	22
curva indica el mejor ajuste de la ecuación (1) a los datos experimentales	

Figura 13. Amplitud de la señal FA vs frecuencia para la muestra A1, la curva	26
sólida representa el mejor ajuste a los datos experimentales	
Figura 14. Amplitud de la señal FA vs frecuencia para la muestra A2, la curva	27
sólida representa el mejor ajuste a los datos experimentales.	
Figura 15. Amplitud de la señal FA vs frecuencia para la muestra A3, la curva	28
sólida representa el mejor ajuste a los datos experimentales	
Figura 16. Amplitud de la señal FA vs frecuencia para la muestra A4, la curva	29
sólida representa el mejor ajuste a los datos experimentales	
Figura 17. Amplitud de la señal FA vs frecuencia para la muestra de acero 1018, la	30
curva sólida representa el mejor ajuste a los datos experimentales.	
Figura 18. Celda fotoacústica en configuración de difusión de calor usada para	31
determinar la efusividad térmica en sólidos	
Figura 19. Amplitud vs frecuencia para determinar la efusividad térmica de las, las	34
líneas sólidas representan el mejor ajuste a los datos experimentales usando la	
ecuación (4)	

LISTA DE TABLAS

D	1	
Р	ิว	σ
1	u	5

Tabla 1. Muestras obtenidas para estudio de la microestructura y sus espesores	10
Tabla 2. Resultados del análisis elemental usando EDS-MEB para la inclusión	13
observada en la figura 4	
Tabla 3. Resultados del análisis químico para el acero X52	15
Tabla 4. Valores hallados para la frecuencia de corte (f_c) y la difusividad térmica (α) a	20
temperatura ambiente de las muestras.	
Tabla 5. Valores reportados de la difusividad térmica a temperatura ambiente de algunos tipos	20
de aceros [2, 14].	
Tabla 6. Espesores y parámetros hallados para las muestras, usando la técnica	24
fotoacústica para hallar ρ experimentalmente	
Tabla 7. Valores de ρ c calculados para las muestras.	25
Tabla 8. Valores experimentales de la efusividad térmica de las muestras.	33

ÍNDICE GENERAL

Pág.

	0
INTRODUCCIÓN.	7
CAPITULO I. MICROESTRUCTURA DEL ACERO X52	9
1.1 Preparación de las muestras.	9
1.2 Resultados y Discusión	10
CAPITULO II. PROPIEDADES TÉRMICAS DEL ACERO X52	16
2.1. Diseño experimental de la técnica fotoacústica (FA).	16
2.2. Difusividad térmica a temperatura ambiente del acero X52	19
2.2.1. Resultados y Discusión	19
2.3. Calor específico por unidad de volumen a temperatura	23
ambiente del acero X52	
2.3.1. Preparación de las muestras	24
2.3.2. Resultados y discusión	24
2.4. Efusividad térmica a temperatura ambiente del acero X52.	31
2.4.1. Preparación de las muestras	31
2.4.2. Resultados y Discusión.	32
2.5. Conductividad térmica a temperatura ambiente.	35
2.3.2	
2.3.3. Análisis de las muestras de cenizas volantes de Termotasajero	
S.A usando DRX	
CAPITULO III. CONCLUSIONES	36
BIBLIOGRAFIA.	