

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER BIBLIOTECA EDUARDO COTE LAMUS

RESUMEN - TESIS DE GRADO

AUTOR: YESID ARMANDO PEÑARANDA ARÉVALO

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: INGENIERÍA MECÁNICA

DIRECTOR: ALBERTO FALLA ARIAS

TÍTULO DE LA TESIS: <u>DISEÑO DE UN SOFTWARE PARA EL CÁLCULO Y ANÁLISIS DE LOS GASES DE COMBUSTIÓN EMITIDOS POR FUENTES FIJAS, PARA EL EQUIPO DE MUESTREO ISOCINÉTICO DE LA UFPS.</u>

RESUMEN

Este trabajo de grado hace referencia al desarrollo de un software para la determinación de parámetros de muestreo y emisión de contaminantes para fuentes fijas (chimeneas o ductos industriales). Este software está fundamentado en los lineamientos de los Métodos EPA, y en la legislación ambiental colombiana (Decreto 02 del 11 de enero de 1982). Puede ser instalado siguiendo el procedimiento descrito en el Anexo D.

Este libro contiene los procedimientos más importantes del Método 1, 2,3 y 4 de la EPA, los cuales hacen alusión en la determinación de puntos de muestreo, velocidad de los gases de chimenea, peso molecular de los gases, y contenidos de humedad, respectivamente, parámetros de mayor importancia en la determinación de emisión de contaminantes (SOx, NOx, material particulado, neblina ácida, entre otros). El Método 5 y 8 de la EPA describen los procedimientos para la determinación de emisión de partículas y neblina ácida respectivamente.

PÁGINAS: 140 ILUSTRACIONES: 43 PLANOS: 0 CD-ROM: 1

DISEÑO DE UN SOFTWARE PARA EL CÁLCULO Y ANÁLISIS DE LOS GASES DE LA COMBUSTIÓN EMITIDOS POR FUENTES FIJAS, APLICADO AL EQUIPO DE MUESTREO ISOCINÉTICO DE LA U.F.P.S.

YESID ARMANDO PEÑARANDA ARÉVALO

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA SAN JOSÉ DE CÚCUTA 2004

DISEÑO DE UN SOFTWARE PARA EL CÁLCULO Y ANÁLISIS DE LOS GASES DE LA COMBUSTIÓN EMITIDOS POR FUENTES FIJAS, APLICADO AL EQUIPO DE MUESTREO ISOCINÉTICO DE LA U.F.P.S.

YESID ARMANDO PEÑARANDA ARÉVALO

Proyecto de grado presentado para optar al título de Ingeniero Mecánico

> Director ALBERTO FALLA ARIAS Ingeniero Mecánico

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA SAN JOSÉ DE CÚCUTA 2004

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

FECHA:

Cúcuta, 2 de agosto de 2004

HORA:

10:00

LUGAR: Laboratorio de fluidos y térmicas

Plan de estudio: INGENIERÍA MECÁNICA

Título de la tesis: "DISEÑO DE UN SOFTWARE PARA EL CÁLCULO Y ANÁLISIS DE LOS GASES DE COMBUSTIÓN EMITIDOS POR FUENTES FIJAS PARA EL EQUIPO DE MUESTREO ISOCINÉTICO DE LA UFPS"

Jurados:

CARMEN LEONOR BARAJAS FORERO

LUIS EMILIO VERA DUARTE

Director: ALBERTO FALLA ARIAS

Nombre de los estudiantes

Código Calificación

Letra

Número

YESID ARMANDO PEÑARANDA ARÉVALO 122111 Cuatro, tres 4,3

APROBADA

CARMEN LEONOR BARAJAS FORERO

LUIS EMILTO VERA DUARTE

O GUTIERREZ LÓPEZ Coordinador Comité Curricular

Jeannette C.

DEDICATORIA

Este trabajo de grado lo dedico principalmente a *DIOS*, por haberme dado la vida y por darme la inteligencia y la fortaleza para superar los obstáculos que se presentaron durante la etapa de preparación.

A mis padres, María *Cecilia Arévalo de Peñaranda y Ciro Alfonso Peñaranda*, por haberme dado la vida, y por apoyarme siempre y en todo momento moral y económicamente.

A mis hermanos, y a mi novia, por el apoyo moral e incondicional que me brindaron durante la etapa de preparación de la carrera.

AGRADECIMIENTOS

Ingeniero Mecánico y director del departamento de fluidos y térmicas, ALBERTO FALLA ARIAS, por ser guía constante durante la etapa de desarrollo del proyecto.

Ingeniero Mecánico, EMILIO VERA, por colaborarme en la etapa de investigación del proyecto.

Ingeniera Química, CARMEN LEONOR BARAJAS, por explicarme algunos conceptos sobre análisis de laboratorio.

Ingeniero de Sistemas y asesor del proyecto, MANUEL ACEVEDO, por ayudarme a interconectar al programa con otras aplicaciones.

Ingenieros de Sistemas, MILTON VERA Y MABEL HERNÁNDEZ, por algunos consejos sobra programación, base de datos y depuración del software.

Funcionario de CORPONOR, SANTOS OMAR MONSALVE, por explicarme varios artículos del DECRETO 02 DE 1982.

Estudiante de Ingeniería Mecánica, MARCOS LEONARDO CHACÓN, por ayudarme a mejorar la presentación de la interfaz del programa, y por la realización de animaciones (GIFS) para el software y la sustentación del proyecto.

Estudiante de Ingeniería Mecánica, EDWIN CONTRERAS, por realizar los esquemas en SOLID EDGE, para la presentación del programa.

Ingeniero Mecánico, JOSE ORLANDO CAÑAS, por guiarme en la realización del Manual de Usuario y Ayudas.

Profesora, TERESA TENJO, por su gran ayuda en la obtención de los materiales y reactivos necesarios para el análisis de las muestras. Además por prestarme asesoría sobre los procedimientos de laboratorio.

Jefe de los laboratorios de química, ASCENSIÓN ACEVEDO, por facilitarme los elementos necesarios, para el análisis de las muestras recolectadas en las pruebas realizadas con el Equipo Isocinético.

Asistente de laboratorio de química, YOLANDA MEJÍA, por colaborarme en la realización de los análisis de laboratorio.

Tecnólogo Químico, RUBÉN CAMARGO, por colaborarme en el montaje del Tren de Muestreo Isocinético, y en los análisis de laboratorio.

A los Ingenieros Mecánicos, JAVIER PEÑARANDA, CESAR CARRILLO, Y CARLOS TARAZONA, por colaborarme en el montaje de la estructura soporte del tren de muestreo.

CONTENIDO

	pág.
INTRODUCCIÓN	21
1. DISEÑO DE UN SOFTWARE PARA EL CÁLCULO Y ANÁLISIS DE LOS GASES DE COMBUSTIÓN EMITIDOS POR FUENTES FIJAS, PARA EL EQUIPO DE MUESTREO ISOCINÉTICO DE LA UFPS.	22
1.1 PLANTEAMIENTO DEL PROBLEMA	22
1.2 FORMULACIÓN DEL PROBLEMA	22
1.3 OBJETIVOS	23
1.3.1 Objetivo general	23
1.3.2 Objetivos específicos	23
1.4 JUSTIFICACIÓN	23
1.5 ALCANCES Y LIMITACIONES	24
1.5.1 Alcances	24
1.5.2 Limitaciones	24
2. MARCO REFERENCIAL	25

2.1 ANTECEDENTES	25
2.2 MARCO CONCEPTUAL	25
2.2.1 Aire	25
2.2.2 Área fuente	25
2.2.3 Boquilla de muestreo	25
2.2.4 Condiciones de referencia	25
2.2.5 Contaminantes	25
2.2.6 Emisión	26
2.2.7 Fuente de emisión	26
2.2.8 Fuente fija	26
2.2.9 Impactores	26
2.2.10 Inmisión	26
2.2.11 Muestreo isocinético	26
2.2.12 Norma de calidad del aire	26
2.2.14 Punto de descarga	26

2.2.15 Tubo pitot	27
2.2.16 Válvula de control	27
2.3 MARCO LEGAL	27
2.4 BASES TEÓRICAS	28
2.4.1 Marco teórico	28
3. PROCEDIMIENTOS PARA LA DETERMINACIÓN DE PARÁMETROS DE MUESTREO	39
3.1 DETERMINACIÓN DE LA CANTIDAD DE PUNTOS DE MUESTREO Y UBICACIÓN EN EL ÁREA TRANSVERSAL DE LA CHIMENEA O DUCTO.	39
3.1.1 Localización de los puertos de muestreo en la chimenea o ducto.	40
3.1.2 Determinación de la cantidad mínima de puntos de muestreo.	42
3.1.3 Ubicación de los puntos de muestreo en el área transversal de la chimenea	44
3.2 DETERMINACIÓN DE LA VELOCIDAD Y FLUJO DE GASES DE CHIMENEA O DUCTOS.	46
3.2.1 Determinaciones preliminares	46
3.2.2 Determinación de la presión estática de la chimenea	47
3.2.3 Ejecución del transverso de velocidades	48

3.3 DETERMINACIÓN DEL PESO MOLECULAR DE LOS GASES DE CHIMENEA O DUCTOS.	51
3.3.1 Determinaciones preliminares	51
3.3.2 Consideraciones para la determinación del peso molecular de los gases.	51
3.3.3 Cálculo del peso molecular seco y húmedo de los gases de chimenea	52
3.4 DETERMINACIÓN DEL CONTENIDO DE HUMEDAD DE LOS GASES DE CHIEMENA O DUCTOS	53
3.4.1 Determinaciones preliminares	53
3.4.2 Condiciones para la extracción de la muestra de gas	53
3.4.3 Preparación del equipo de muestreo	53
3.4.4 Chequeo de fugas antes del muestreo	54
3.4.5 Operación del tren de muestreo	55
3.4.6 Preparación de los impactores para el pesaje	56
3.4.7 Cálculo del contenido de humedad de los gases	56
3.5 DETERMINACIÓN DEL DIÁMETRO ÓPTIMO DE LA BOQUILLA DE MUESTREO.	59
3.5.1 Determinaciones preliminares	59

3.5.2 Cálculo del diámetro óptimo de la boquilla	60
4. PROCEDIMIENTOS PARA LA DETERMINACIÓN DE EMISIÓN DE CONTAMINANTES EN FUENTES FIJAS	61
4.1 DETERMINACIÓN DE LA CONCENTRACIÓN Y EMISIÓN DE PARTÍCULAS EN CHIMENEAS O DUCTOS	61
4.1.1 Determinaciones preliminares	61
4.1.2 Equipos y componentes necesarios para el muestreo en el campo	62
4.1.3 Condiciones para la realización del muestreo	63
4.1.4 Elementos necesarios para la recolección y recuperación de la muestra	63
4.1.5 Elementos necesarios para el análisis de la muestra	64
4.1.6 Preparación del equipo y elementos necesarios para la recolección de la muestra	64
4.1.7 Chequeo de infiltraciones previo al muestreo isocinético	65
4.1.8 Operación del tren de muestreo	66
4.1.9 Chequeo de fugas después del muestreo	67
4.1.10 Recuperación de la muestra para determinar el total de partículas	68
4.1.11 Almacenamiento del filtro en el contenedor Nº1	69

4.1.12 Almacenamiento del lavado con acetona en el contenedor Nº2				
4.1.13 Almacenamiento de la sílica gel en el contenedor Nº3	71			
4.1.14 Procedimiento de análisis de las muestras	71			
4.1.15 Cálculo de la concentración de partículas	72			
4.1.16 Cálculo de la emisión de partículas	74			
4.2 DETERMINACIÓN DE LA CONCENTRACIÓN Y EMISIÓN DE DIÓXIDO DE AZUFRE SO ₂ Y NEBLINA ÁCIDA (H ₂ SO ₄ Y SO ₃) EN CHIMENEAS O DUCTOS	75			
4.2.1 Determinaciones preliminares	75			
4.2.2 Equipos y componentes necesarios	76			
4.2.3 Materiales para la recolección de la muestra	77			
4.2.4 Materiales para el análisis de las muestras	78			
4.2.5 Reactivos y elementos para la recolección y recuperación de la muestra	78			
4.2.6 Preparación del tren de muestreo	78			
4.2.7 Procedimiento preliminar de chequeo de fugas	79			
4.2.8 Operación del tren de muestreo	79			

4.2.9 Recuperación de la muestra en el contenedor Nº1	81
4.2.10 Recuperación de la muestra de los impactores 2 y 3 en el contenedor $N^{\circ}2$	82
4.2.11 Procedimiento de análisis de las muestras	82
4.2.12 Cálculo de la concentración de dióxido de azufre $(S0_2)\ y$ neblina ácida $(H_2S0_4\ y\ S0_3)$	83
4.2.13 Cálculo de la emisión de $S0_2$ y neblina ácida	85
5. ESTRUCTURA DEL SOFTWARE	86
5.1 DIAGRAMAS DE FLUJO PARA CADA UNO DE LOS PROCEDIMIENTOS	86
5.1.1 Cantidad y ubicación de los puntos de muestreo	87
5.1.2 Velocidad y flujo de gases de chimenea	91
5.1.3 Peso molecular de los gases de chimenea	92
5.1.4 Contenido de humedad de los gases de chimenea	94
5.1.5 Emisión y concentración de partículas	96
5.1.6 Emisión y concentración de S02 y neblina ácida	100
5.1.7 Diámetro óptimo de la boquilla	102

	JDOCÓDIGOS IMIENTOS	PARA	CADA	UNO	DE	LOS	103
5.2.1 Cant	idad y ubicación	de los pun	tos de mue	streo			103
5.2.2 Velo	cidad y flujo de g	gases de chi	imenea				105
5.2.3 Peso	molecular de los	gases de c	himenea				105
5.2.4 Cont	tenido de humeda	ad de los ga	nses de chir	nenea			106
5.2.5 Emis	sión y concentrac	ión de par	tículas				107
5.2.6 Emis	sión y concentrac	ión de S02	2 y neblina	ácida			109
5.2.7 Dián	netro óptimo de l	a boquilla					110
6. DISEÑ	O METODOLÓ	GICO					111
6.1 TIPO	DE INVESTIGA	CIÓN					111
6.2 RECO	LECCIÓN DE I	A INFOR	MACIÓN				111
6.3 ANÁL	ISIS DE LOS RI	ESULTAD	os				112
7. CONCI	LUSIONES						113
8. RECO	MENDACIONES	\$					114
BIBLIOG	RAFÍA						115

ANEXOS 117