Vigilada Mineducación	GESTIÓN DE SERVICIOS ACADÉMICOS Y BIBLIOTECARIOS		CÓDIGO VERSIÓN	FO-GS-15 02	
	ESQUEMA HOJA DE RESUMEN		FECHA	03/04/2017	
			PÁGINA	1 de 1	
ELABORÓ		REVISÓ	AP	APROBÓ	
Jefe División de Biblioteca		Equipo Operativo de Calidad	Líder de Calidad		

RESUMEN TRABAJO DE GRADO

AUTOR(ES):

NOMBRE(S): JUAN GUILLERMO APELLIDOS: ROJAS OLEJUA

NOMBRE(S): MARYURY YAJAIRA APELLIDOS: SANCHEZ CARVAJALINO

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: INGENIERÍA INDUSTRIAL

DIRECTOR:

NOMBRE(S): LEONARDO CELY APELLIDOS: ILLERA

CO DIRECTOR:

NOMBRE(S): KEILA APELLIDOS: ANTELIZ CONTRERAS

TÍTULO DEL TRABAJO (TESIS): EFECTOS DE LA BORRA DEL CAFÉ EN LAS PROPIEDADES FÍSICO-MECÁNICAS Y ESTRUCTURALES DE REVESTIMIENTOS EXTRUIDOS

RESUMEN:

En la presente investigación se hace un estudio unificando dos industrias (la industria cerámica y la industria del café) pueden resultar grandes descubrimientos y productos con grandes propiedades. Hasta la fecha, se han realizado varios proyectos empresariales utilizando la borra del café, estos proyectos han sido enfocados en la creación de productos tales como vasijas, platos, tazas de café, otros recipientes e incluso se ha venido incursionando en la fabricación de revestimientos, realizando mezclas entre la borra de café y arcillas, junto con aglutinantes, aditivos y aglomerantes; moldeando el material mediante el proceso de conformado por medio de prensado. Como objetivo específico se tienen: evaluar si es viable en un producto de revestimiento extruido la adición de borra de café y la influencia que este subproducto agroindustrial conlleva en las propiedades finales del producto.

PALABRAS CLAVES: industria del café, industria cerámica, propiedades fisicoquímicas,

revestimientos extruidos. CARACTERISTICAS:

PÁGINAS: 94 PLANOS: ILUSTRACIONES:

EFECTOS DE LA BORRA DEL CAFÉ EN LAS PROPIEDADES FÍSICO-MECÁNICAS Y ESTRUCTURALES DE REVESTIMIENTOS EXTRUIDOS

JUAN GUILLERMO ROJAS OLEJUA

MARYURY YAJAIRA SANCHEZ CARVAJALINO

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

INGENIERÍA INDUSTRIAL

CÚCUTA

2021

EFECTOS DE LA BORRA DEL CAFÉ EN LAS PROPIEDADES FÍSICO-MECÁNICAS Y ESTRUCTURALES DE REVESTIMIENTOS EXTRUIDOS

JUAN GUILLERMO ROJAS OLEJUA

MARYURY YAJAIRA SANCHEZ CARVAJALINO

DIRECTOR LEONARDO CELY ILLERA MSC. CIENCIA Y TECNOLOGÍA DE MATERIALES

CODIRECTOR KEILA ANTELIZ CONTRERAS INGENIERA INDUSTRIAL

TESIS DE GRADO PRESENTADO COMO REQUISITO PARA OPTAR EL TÍTULO DE INGENIERO INDUSTRIAL

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

INGENIERÍA INDUSTRIAL

CÚCUTA

2021

ACTA DE SUSTENTACIÓN DE TRABAJO DE GRADO

FECHA: 22 de octubre, 2021

HORA: 04:00 p.m

GOOGLE MEET - CORREO INSTITUCIONAL UFPS LUGAR:

PLAN DE ESTUDIOS: INGENIERIA INDUSTRIAL

TÍTULO DE LA TESIS: EFECTOS DE LA BORRA DE CAFÉ EN LAS PROPIEDADES FISICO-MECANICAS Y ESTRUCTURALES DE REVESTIMIENTOS EXTRUIDOS.

JURADOS: CARLOS ALBERTO ARARAT BERMUDEZ

MARIBEL GOMEZ PEÑARANDA

DIRECTOR: LEONARDO CELY ILLERA

CODIRECTOR: KEILA ANTELIZ CONTRERAS 2021Obni*

NOMBRE DEL ESTUDIANTE	LETRA	CALIFICACIÓN	NÚMERO
MARYURY YAJAIRA SÄNCHEZ			
CARVAJALINO	1192074	cuatro, tres	4.3

JUAN GUILLERMO ROJAS OLEJUA 1192056 cuatro, tres 4.3

APROBADA

CARLOS ALBERTO ARARAT BERMÚDEZ MARIBEL GÓMEZ PEÑARANDA

Vo.Bo GAUDY CAROUINA Directore Plan de Estudios

Ingeniería Industrial

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.utps.edu.co oficinadeprensa@utps.edu.co San José de Cúcuta - Colombia

Crossia moderne recent SIS ne 1970.

Contenido

Introducción	10
1. El problema	13
1.1 Título	13
1.2 Planteamiento del problema	13
1.3 Formulación del problema	14
1.4 Justificación	15
1.5 Objetivos	16
1.5.1 Objetivo General	16
1.5.2 Objetivos Específicos.	16
1.6 Alcances y Limitaciones	17
1.6.1 Alcances.	17
1.6.2 Limitaciones	17
2. Marco Referencial	19
2.1 Antecedentes	19
2.2 Marco Contextual	22
2.3 Marco Teórico	26
2.4 Marco Conceptual	35
2.4.1 Plasticidad	35
2.4.2 Pasta cerámica	36
2.4.3 Desgrasante	36
2.4.4 Borra de café	37
2.4.5 Análisis térmicos	38
2.4.6 Análisis térmico diferencial (DTA)	38
2.4.7 Análisis termogravimétrico (TG)	39
2.4.8 Análisis dilatométrico (DIL)	39
2.4.9 Ensayo absorción de agua	39
2.4.10 Resistencia mecánica a la flexión	40
2.4.11 Resistencia a la abrasión profunda	40
2.4.12 Difracción de Rayos X (DRX)	41
2.4.13 Fluorescencia de Rayos X (FRX)	41
2.4.14 Ensayo de granulometría por hidrómetro	41
2.4.15 Calorimetría diferencial de barrido (DSC)	42

2.5 Marco Legal	43
2.5.1 Estatuto estudiantil	43
2.5.2 Normas Técnicas	44
2.5.3 Métodos Internos	45
3. Diseño Metodológico	46
3.1 Metodología	46
3.2 Población y Muestra	47
3.3 Instrumentos para la recolección de la información	48
4. Resultado y Análisis	49
4.1 Evaluación química y mineralógica de la arcilla y la borra de café	50
4.2 Identificación de las proporciones adecuadas de arcilla y borra de café, que pe obtener la mejor pasta cerámica en la fabricación de un producto cerámico extruido.	ermiten 55
4.3 Evaluación del comportamiento físico de las formulaciones	60
4.4 Evaluación térmica, mecánica y estructural del producto cerámico fabricado c diferentes pastas cerámicas de mejor comportamiento	con las 65
4.5 Determinar el tráfico de los revestimientos extruidos fabricados con la pasta cerelegida.	rámica 72
Conclusiones	75
Recomendaciones	78
Referencias	78
ANEXOS	83