	GESTIÓN DE SERVICIOS ACADÉMICOS Y BIBLIOTECARIOS		CÓDIGO	FO-GS-15	
			VERSIÓN	02	
		ESQUEMA HOJA DE RESUMEN		FECHA	03/04/2017
Vigitada Mineducación	ESQUENIA HOJA DE RESUMEN			PÁGINA	1 de 1
ELABORÓ		REVISÓ	APROBÓ		
Jefe División de Biblioteca		Equipo Operativo de Calidad	Líder de Calidad		

RESUMEN TRABAJO DE GRADO

AUTOR(ES): NOMBRES Y APELLIDOS CO	OMPLETOS				
NOMBRE(S): ANGILY PAOLA	APELLIDOS: <u>CRUZ HERNÁNDEZ</u>				
NOMBRE(S): NEYDER ALEIXER	APELLIDOS: SANDOVAL VARGAS				
FACULTAD: <u>INGENIERIA</u>					
PLAN DE ESTUDIOS: <u>INGENIERIA INDUSTRIAL</u>					
DIRECTOR:					
NOMBRE(S): EDWIN ALBERTO A	PELLIDOS: MURILLO RUIZ				
TÍTULO DEL TRABAJO (TESIS): <u>EVALUA</u> <u>ALTAMENTE RAMIFICADO DE PRIMERA</u>	ACIÓN DE UN POLIÉSTER POLIOL A GENERACIÓN (HBP1G) COMO AGENTE				
	<u>LIESTIRENO (PS) RECICLADO Y CASCARILLA</u>				
DE ARROZ					

Su estudio contribuye a la preparación de compuestos a partir de poliestireno reciclado y cáscara de arroz (se incinera principalmente produciendo contaminación ambiental en el departamento Norte de Santander-Colombia), lo que contribuirá a reducir la acumulación de residuos derivados de las industrias polimérica y arrocera en la región. Por lo tanto, el objetivo del proyecto se atribuyó a utilizar un poliéster hiperramificado como agente plastificante y evaluar su influencia en las propiedades de los compuestos. Las proporciones del poliestireno reciclado y cáscara de arroz fueron del 60% y del 40%, respectivamente. En el caso del poliéster, se emplearon cantidades en aumento de 10%, 20%, 30% y 40%. También se preparó una muestra control (0% de poliéster). Los resultados del análisis infrarrojo evidenciaron cambios en la absorción de los grupos OH. El análisis termogravimétrico mostró que la primera descomposición térmica de los compuestos disminuyó con el contenido de poliéster, pero no siguió la misma tendencia en propiedades mecánicas. Los resultados del análisis de microscopía electrónica de escaneo permitieron evidenciar que el mecanismo de fractura del compuesto era frágil. Todos los compuestos preparados con poliéster, presentaron un valor de viscosidad inferior a la muestra control, esto significa que el poliéster actuó como agente plastificante.

PALABRAS CLAVES: POLIESTIRENO, CASCARILLA DE ARROZ, HBP1G, RESIDUOS, COMPUESTOS, PLASTIFICANTES.

CARACTERISTICAS:

PÁGINAS: 66 PLANOS: ILUSTRACIONES: CD ROOM: _

EVALUACIÓN DE UN POLIÉSTER POLIOL ALTAMENTE RAMIFICADO DE PRIMERA GENERACIÓN (HBP1G) COMO AGENTE PLASTIFICANTE PARA MEZCLAS DE POLIESTIRENO (PS) RECICLADO Y CASCARILLA DE ARROZ

ANGILY PAOLA CRUZ HERNÁNDEZ NEYDER ALEIXER SANDOVAL VARGAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍA
PLAN DE ESTUDIOS DE INGENIERÍA INDUSTRIAL
SAN JOSÉ DE CÚCUTA

2020

EVALUACIÓN DE UN POLIÉSTER POLIOL ALTAMENTE RAMIFICADO DE PRIMERA GENERACIÓN (HBP1G) COMO AGENTE PLASTIFICANTE PARA MEZCLAS DE POLIESTIRENO (PS) RECICLADO Y CASCARILLA DE ARROZ

ANGILY PAOLA CRUZ HERNÁNDEZ NEYDER ALEIXER SANDOVAL VARGAS

Proyecto de grado presentado como requisito para optar al título de Ingeniero Industrial

Director:

EDWIN ALBERTO MURILLO RUIZ

Químico, Msc. Ph. D en Ciencias Química

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA INDUSTRIAL

SAN JOSÉ DE CÚCUTA

2020

ACTA DE SUSTENTACIÓN DE TRABAJO DE GRADO

FECHA:

martes 10 de marzo, 2020

HORA:

08:00 a.m.

LUGAR:

Sala de Cread, tercer piso

PLAN DE ESTUDIOS: INGENIERIA INDUSTRIAL

TÍTULO DEL PROYECTO: "EVALUACIÓN DE UN POLIÉSTER POLIOL ALTAMENTE RAMIFICADO DE PRIMERA GENERACIÓN (HBPIG) COMO AGENTE PLASTIFICANTE PARA MEZCLAS DE POLIESTIRENO (PS) RECICLADO Y CASCARILLA DE ARROZ."

JURADOS:

GAUDY CAROLINA PRADA BOTLA JOHN WILMER PARRA LLANOS ANA MILINEA GOMEZ SOTO

DIRECTOR:

EDWIN ALBERTO MURILLO RUIZ

NOMBRE DEL ESTUDIANTE

CALIFICACIÓN CÓDIGO

NÚMERO

LETRA

NEYDER ALEIXER SANDOVAL VARGAS 1191897

Cuatro, Cuatro

4.4

ANGILY PAOLA CRUZ HERNÁNDEZ

1191886

Cuatro, Cuatro

APROBADA

ANA MIDENA GÓMEZ SOTO

Director Plan de Estudios Ingenieria Industrial

> Avenida Gran Colombia No. 12E-96 Barrio Colsag Telétono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

> > Creada mediarne decreto 323 de 1970

A Dios por guiarnos en este camino lleno de sabiduría, comprensión y esfuerzos.

Dedicamos el esfuerzo de este trabajo a nuestras madres, NIDIA CRUZ HERNÁNDEZ Y ROSA ALIRIA VARGAS, por enseñarnos el significado de la perseverancia; a ellas agradecemos el valor de la vida.

Dedicado a nuestros familiares, por la compañía y apoyo que nos han brindado en el proceso de formación académica y profesional.

Dedicado a nuestros amigos, ANGIE MOGOLLÓN, KRISSEL PARRA Y WILLIAM VILLAMIL por la compañía en el desarrollo de esta experiencia adquirida.

Gratifico a la UNIVERSIDAD FRANCISCO DE PAULA SANTANDER, por abrirnos las puertas al conocimiento y a la formación integral.

Agradecimientos

Los autores expresan sus agradecimientos:

A Edwin Murillo, PhD en Química Industrial, director del proyecto, por su apoyo, colaboración y enseñanza, que fueron indispensables para la consecución de este logro.

Al grupo GIMAPOL, que nos abrió las puertas para el desarrollo del proyecto.

Al departamento de Procesos Industriales, por la enseñanza en el proceso de aprendizaje.

A todos los que de una u otra manera hicieron parte de este proyecto.

Contenido

	Pág.
Resumen	13
Introducción	14
1. El problema	16
1.1 Título	16
1.2 Planteamiento del problema	16
1.3 Formulación del problema	19
1.4 Justificación	19
1.5 Objetivos	20
1.5.1 Objetivo general	20
1.5.2 Objetivos específicos	20
1.6 Alcances y limitaciones	21
1.6.1 Alcances	21
1.6.2 Limitaciones	21
2. Marco referencial	22
2.1 Antecedentes	22
2.2 Marco contextual	25
2.2.1 Universidad Francisco de Paula Santander	25
2.3 Marco teórico	26
2.3.1 Material compuesto	26
2.3.1.1 Tipos de materiales compuestos	26
2.3.2 CA	28
2.3.3 El PS	31
2.3.3.1 Mecanismos de reacción	32

2.3.3.2 Obtención del PS	32
2.3.3.3 Clases de PS	33
2.3.4 HBP	34
2.3.4.1 La síntesis de HBPs	34
2.3.4.2 Aplicaciones de los HBPs	36
2.4 Marco Conceptual	37
3. Diseño metodológico	38
3.1 Tipo de investigación	38
3.2 Población y muestra	38
3.2.1 Población	38
3.2.2 Muestra	38
3.3 Instrumentos para la recolección de la información	39
3.3.1 Fuentes primarias	39
3.3.2 Fuentes secundarias	39
3.4 Análisis de la información	39
3.5 Parte experimental	40
3.5.1 Materiales	40
3.5.2 Preparación de los materiales	40
3.5.3 Metodologías empleadas para la caracterización de los materiales	41
3.5.3.1. Análisis granulométrico	41
3.5.3.2 Análisis IR	41
3.5.3.3 Análisis termogravimétrico (TGA)	42
3.5.3.4 Análisis de tracción	42
3.5.3.5 Análisis de microscopía electrónica de barrido (SEM)	42
3.5.3.6 Análisis reológico	42

3.5.3.7 Absorción de agua (AA) y espesor de hinchamiento (EH)	
3.5.3.8 Interacción entre la superficie de las placas y el agua	43
3.5.3.9 Densidad de los materiales	44
3.5.3.10 Análisis de inflamabilidad	44
3.5.3.11 Análisis de conductividad térmica	44
4. Análisis y resultados	45
4.1 Análisis granulométrico de la CA	
4.2 Análisis IR	45
4.3 Análisis de TGA	47
4.4 Análisis de tracción	49
4.5 Análisis SEM	50
4.6 Análisis reológicos	51
4.7 Absorción de agua (AA) y el espesor de hinchamiento (EH)	53
4.8 Interacción entre la superficie de las placas y el agua	55
4.9 Densidad de los materiales	57
4.10 Ensayo de inflamabilidad	57
4.11 Conductividad térmica	58
5. Conclusiones	60
6. Recomendaciones	62
Bibliografía	63