

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código

FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página

1/103

RESUMEN TRABAJO DE GRADO

AUTOR:

NOMBRE(S): CRISTIAN DAVID APELLIDOS: CALDERÓN VILLAMIZAR

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: INGENIERÍA ELECTRÓNICA

DIRECTOR:

NOMBRE(S): <u>KARLA CECILIA</u>

APELLIDOS: PUERTO LÓPEZ

NOMBRE(S): DINAEL

APELLIDOS: GUEVARA IBARRA

TÍTULO DEL TRABAJO (TESIS): EVALUACIÓN DE LA ECUACIÓN NO LINEAL

DE SCHRODINGER PARA SISTEMAS DE RADIO SOBRE FIBRA.

RESUMEN

SE DESARROLLÓ EL MODELADO, SIMULACIÓN Y EVALUACIÓN DE LA ECUACIÓN NO LINEAL DE SCHRÖDINGER (NLSE), LA CUAL PERMITE DESCRIBIR EL COMPORTAMIENTO DE LOS PULSOS TRANSMITIDOS EN UN CANAL ÓPTICO. LA INVESTIGACIÓN SE REALIZÓ TENIENDO EN CUENTA EL MÉTODO NUMÉRICO SPLIT-STEP DE FOURIER A PARTIR DE TÉCNICAS DE EVALUACIÓN COMO DIAGRAMAS DE OJO, DIAGRAMAS DE POTENCIA, VARIACIÓN DE PARÁMETROS Y RELACIÓN SEÑAL A RUIDO OBTENIDAS MEDIANTE LA HERRAMIENTA COMPUTACIONAL MATLAB. ENTRE LOS RESULTADOS SE MUESTRA LA DEPENDENCIA ENTRE LOS FENÓMENOS LINEALES Y NO LINEALES CON LA VELOCIDAD DE TRANSMISIÓN Y LA POTENCIA DE ENTRADA. SE EVIDENCIÓ QUE LA LONGITUD DE ENLACE Y LA POTENCIA DE LA SEÑAL TIENEN RELACIÓN DIRECTA CON LA APARICIÓN DE LOS EFECTOS NO LINEALES.

PALABRAS CLAVE: ECUACIÓN NO LINEAL DE SCHRÖDINGER, SPLIT-STEP FOURIER, ERRORES NO LINEALES, TÉCNICAS DE EVALUACIÓN.

CARACTERISTICAS:

PÁGINAS: 103 PLANOS: 0 ILUSTRACIONES: 38 CD ROOM: 1

EVALUACIÓN DE LA ECUACIÓN NO LINEAL DE SCHRÖDINGER PARA SISTEMAS DE RADIO SOBRE FIBRA

CRISTIAN DAVID CALDERÓN VILLAMIZAR

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA ELECTRÓNICA
SAN JOSÉ DE CÚCUTA

2018

EVALUACIÓN DE LA ECUACIÓN NO LINEAL DE SCHRÖDINGER PARA SISTEMAS DE RADIO SOBRE FIBRA

Presentado por:

CRISTIAN DAVID CALDERÓN VILLAMIZAR

Proyecto de grado para optar por el título de Ingeniero Electrónico

DIRECTOR:

KARLA CECILIA PUERTO LÓPEZ

M.Sc. Ingeniería en telecomunicaciones.

CODIRECTOR:

DINAEL GUEVARA IBARRA

Ph. D en Ingeniería

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA ELECTRÓNICA

SAN JOSÉ DE CÚCUTA

NIT. 890500622 - 6

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

Fecha:

CÚCUTA, 06 DE NOVIEMBRE DE 2018

Hora:

09:00

Lugar:

AULAS GENERALES, AG104

Plan de Estudios:

INGENIERÍA ELECTRÓNICA

Título de la Tesis:

"EVALUACIÓN DE LA ECUACIÓN NO LINEAL DE

SCHRODINGER PARA SISTEMAS DE RADIO SOBRE FIBRA."

Jurados:

IE MSc. DAYANA NAIYERLING GALVIS VILLAMIZAR

IE MSc. ANGELO JOSEPH SOTO VERGEL

Director: Codirector: IE MSc. KARLA CECILIA PUERTO LÓPEZ

IE PhD. DINAEL GUEVARA IBARRA

Nombre del Estudiante

Código

Calificación

CRISTIAN DAVID CALDERÓN VILLAMIZAR

1160996

CINCO, CERO (5,0)

LAUREADA

DAYANA N. GALVIS VILLAMIZAR

Vo.Bo. DINAEL GUEVARA IBARRA, IE PhD

Coordinador (e) Comité Curricular

Ingeniería Electrónica

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

Creada mediante decreto 323 de 1970

DEDICATORIA

A las tres personas más importantes de mi vida: mis hermanos, Diana Calderón,
Marcos Calderón y Luisa Nicoll Sánchez. Los amo con todo mi corazón, siempre estaré
agradecido con la vida por permitirme haber crecido y compartido con ustedes. Son mi
mayor ejemplo y motivación para seguir adelante. Quiero también dedicarle este logro tan
importante a mi madre Elizabeth Villamizar, por ser la mujer que no sólo me dió la vida,
sino que me enseñó a tener la fortaleza, los valores y los principios que me caracterizan
como persona. Espero que desde el cielo te sientas muy orgullosa de la persona en la que
me he convertido. Gracias por todo, mamá.

Cristian David Calderón Villamizar

AGRADECIMIENTOS

El autor expresa sus agradecimientos a:

A todos los profesores y compañeros que hicieron parte de este proceso de aprendizaje y a los miembros del grupo de investigación y desarrollo en telecomunicaciones GIDET, especialmente a la M.Sc. Karla Cecilia Puerto López y al PhD. Dinael Guevara Ibarra por su confianza, orientación y apoyo en todo este proceso de formación profesional. A todos ellos infinitas gracias.

Tabla de Contenido

	Pág.
Introducción	14
1. Descripción del problema	16
1.1. Planteamiento del problema	17
1.2. Justificación	17
1.3. Alcances	19
1.4. Objetivos1.4.1. Objetivo General1.4.2. Objetivos específicos	19 19 20
1.5. Limitaciones y delimitaciones1.5.1. Limitaciones1.5.2. Delimitaciones	20 21 21
1.6. Marco referencial	22
 1.7. Marco teórico 1.7.1. Ecuación no lineal de Schrödinger 1.7.2. Comunicaciones por fibra óptica 1.7.2.1. Estructura de una fibra óptica 1.7.2.2. Aspectos de no linealidad de la fibra 1.7.3. Sistemas de radio sobre fibra (RoF) 1.7.4. Métodos de solución de la ecuación no lineal de Schrödinger 1.7.4.1. Método Split Step Fourier 1.7.4.2. Método Split Step Fourier simétrico o de segundo orden 	24 24 26 27 27 29 31 31 32
1.8. Marco legal	33
2. Metodología	35
2.1. Tipo de investigación	35
2.2. Diseño metodológico 2.2.1. Recopilar información a través de la web, libros y artículos científico ecuación no lineal de Schrödinger, métodos de solución de las ecua modelo, los sistemas de radio sobre fibra, y los parámetros no linea	ciones del
presentes en la transmisión por fibra óptica.	35
2.2.2. Realizar el modelado matemático de la ecuación no lineal de Schrö sistemas de radio sobre fibra mediante un análisis detallado de las v	
rigen los fenómenos no lineales para sistemas de radio sobre fibra.	36

2.2.3. Implementar mediante un software especializado un programa ejecutable	
encargado de simular el modelado y visualización gráfica de la ecuación n	10
lineal de Schrödinger aplicada a sistemas de radio sobre fibra.	37
2.2.4. Evaluar el sistema implementado mediante configuraciones de análisis de	
parámetros de no linealidad, atenuación y dispersión de la fibra, document	tando
los resultados obtenidos en las simulaciones realizadas en el programa.	38
2.2.5. Dar a conocer y divulgar el proyecto de investigación propuesto mediante	
ponencias institucionales y artículos científicos donde se exponga el desar	rollo
y los resultados obtenidos con el proyecto.	38
3. Resultados	40
3.1. OBJETIVO 1: Recopilar información a través de la web, libros y artículos	
científicos sobre la ecuación no lineal de Schrödinger, métodos de solución de	las
ecuaciones del modelo, los sistemas de radio sobre fibra, y los parámetros no	
lineales presentes en la transmisión por fibra óptica.	40
3.1.1. Pulsos ópticos de entrada	41
3.1.1.1. Pulsos Gaussianos	41
3.1.1.2. Pulsos Súper-gaussianos	42
3.1.1.3. Pulsos Secantes	43
3.1.1.4. Generación de una secuencia de bits de entrada	44
3.1.2. Longitud de dispersión lineal y longitud no lineal	45
3.1.3. NLSE SOLVER	46
3.1.4. Técnicas de evaluación de un sistema de comunicaciones	47
3.1.4.1. Diagrama de ojo	47
3.1.4.2. Diagrama de constelación	48
3.1.4.3. Tasa de Error de Bit	49
3.1.5. Modelado de los efectos de tipo no lineal presentes en la propagación por	fibra
óptica	49
3.1.5.1. Fenómeno no Lineal Auto Modulación de Fase	49
3.1.5.2. Fenómeno no Lineal Modulación de Fase Cruzada	51
3.1.5.3. Mezcla de cuarta onda FWM	52
3.2. OBJETIVO 2: Realizar el modelado matemático de la ecuación no lineal de	
Schrödinger para sistemas de radio sobre fibra mediante un análisis detallado d	
variables que rigen los fenómenos no lineales para sistemas de radio sobre fibr	
3.2.1. Método aproximado mediante la dispersión cromática	58
3.2.2. Método aproximado mediante el efecto Kerr	58
3.2.3. Solución exacta mediante métodos numéricos	59

3.3. OBJETIVO 3: Implementar mediante un software especializado un programa	
ejecutable encargado de simular el modelado y visualización gráfica de la ecuaci no lineal de Schrödinger aplicada a sistemas de radio sobre fibra.	ión 60
	00
3.4. OBJETIVO 4: Evaluar el sistema implementado mediante configuraciones de	
análisis de parámetros de no linealidad, atenuación y dispersión de la fibra,	
documentando los resultados obtenidos en las simulaciones realizadas en el	
programa.	62
3.4.1. Análisis para bajas potencias y velocidades de transmisión bajas	64
3.4.2. Análisis para bajas potencias y velocidades de transmisión altas	65
3.4.3. Análisis para altas potencias y velocidades de transmisión bajas	65
3.4.4. Análisis para altas potencias y velocidades de transmisión altas	66
3.4.5. Propagación de una secuencia de bits	68
3.4.6. Análisis para un enlace de 20 km y velocidad de transmisión de 1 Gbps	69
3.4.7. Análisis para un enlace de 20 km y velocidad de transmisión de 2.5 Gbps	70
3.4.8. Análisis para un enlace de 20 km y velocidad de transmisión de 100 Gbps	70
3.4.9. Análisis de la transmisión en la fibra mediante diagrama de ojo	71
3.4.10. Transmisión con pulsos gaussianos VS pulso compensado	72
3.4.11. Análisis de efectos no lineales	73
3.4.11.1. Análisis para una potencia de 10 mW	74
3.4.11.2. Análisis para una potencia de 30mW	77
3.4.11.3. Análisis para una potencia de 60mW	80
3.4.12. Comparación de resultados mediante el software NLSE SOLVER	84
3.5. OBJETIVO 5: Dar a conocer y divulgar el proyecto de investigación propuesto	
mediante ponencias institucionales y artículos científicos donde se exponga el	
desarrollo y los resultados obtenidos con el proyecto	86
4. Conclusiones	91
Referencias	94
Anexos	97