

UNVERSIDAD FRANCISCO DE PAULA SANTANDER BIBLIOTECA EDUARDO COTE LAMUS

RESUMEN TESIS DE GRADO

AUTOR (ES):		
NOMBRE (S): GIAN FRANZUA		APELLIDOS: ZARZA VARGAS
NOMBRE (S):		APELLIDOS:
FACULTAD:	INGENIERÍA	
	S: INGENIERÍA EL	ECTRÓNICA
DIRECTOR: NOMBRE (S): JOHN	NY OMAR	APELLIDOS: MEDINA DURÁN
TITULO DE LA TE		L SISTEMA DE AUTOMATIZACIÓN Y CONTROL
PARA EL PROCES	O INDUSTRIAL DE	LAVADO EN EL HOSPITAL UNIVERSITARIO
HERASMO MEOZ.		
RESUMEN:		
Se realizó un diseñ	o de automatización y	control con el fin de mejorar el proceso industrial de
lavado en el Hosp	ital Universitario Erasn	no Meoz, donde se incluyó dispositivos electrónicos
innovadores y de úl	ltima tecnología qué per	mitieran optimizar y alargar la vida útil de la lavadora;
se realizó la progr	ramación en lenguaje l	adder para un PLC visión 120 de Unitronics, y la
sincronización de u	na variador de velocida	d Altivar_71 de Schneider Electric y un motor de alta
eficiencia del fabric	cante Weg.	
Palabras clave: Var	iador de velocidad, Sens	sor capacitivo, automatizar, lenguaje Ladder.

CARACTERÍSTICAS:

PAGINAS: 98 PLANOS: ILUSTRACIONES: CD-ROM: 1

DISEÑO DEL SISTEMA DE AUTOMATIZACIÓN Y CONTROL PARA EL PROCESO INDUSTRIAL DE LAVADO EN EL HOSPITAL UNIVERSITARIO ERASMO MEOZ.

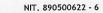
GIAN FRANZUA ZARZA VARGAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍAS
PLAN DE ESTUDIOS DE INGENIERÍA ELECTRÓNICA
SAN JOSÉ DE CÚCUTA

2014.

DISEÑO DEL SISTEMA DE AUTOMATIZACIÓN Y CONTROL PARA EL PROCESO INDUSTRIAL DE LAVADO EN EL HOSPITAL UNIVERSITARIO ERASMO MEOZ.

GIAN FRANZUA ZARZA VARGAS


Trabajo de grado presentado como requisito para optar al título de Ingeniero Electrónico

Director:

IE. M.Sc. JOHNNY OMAR MEDINA DURÁN

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍAS
PLAN DE ESTUDIOS DE INGENIERÍA ELECTRÓNICA
SAN JOSÉ DE CÚCUTA

2014.

www.ufps.edu.co

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

San José de Cúcuta, Octubre 22 de 2014. FECHA:

HORA: 04:00 P.M.

LUGAR: SALA3 - CREAD

PLAN DE ESTUDIOS: INGENIERÍA ELECTRÓNICA

"DISEÑO DEL SISTEMA DE AUTOMATIZACIÓN Y CONTROL PARA EL PROCESO INDUSTRIAL DE LAVADO EN EL HOSPITAL Título de la Tesis:

UNIVERSITARIOS ERASMO MEOZ".

IE. ANDRÉS EDUARDO PÁEZ PEÑA Jurados:

IE. YESENIA RESTREPO CHAUSTRE

IE. M.Sc. JOHNNY OMAR MEDINA DURÁN Director:

Nombre de los Estudiantes Código Calificación

Letra Número GIAN FRANZUA ZARZA VARGAS 1160021 Cuatro, cuatro 4.4

APROBADA

STREPO CHAUSTRE

Vo.Bo. IE. DINAEL GUEVARA IBARRA, Ph.D.

Coordinador Comité Curricular Ingeniería Electrónica

> Av. Gran Colombia No. 12E-96 Colsag Teléfono: 5776655

Cúcuta - Colombia

DEDICATORIA.

A mis padres Rosario Vargas y Carlos Zarza por ser los motores de mi vida, por su apoyo y cariño incondicional, porque son un ejemplo de entrega y sacrificio; eternamente estaré agradecido con ustedes. Gracias siempre.

A Rosita Soto por su incondicional amor, apoyo y comprensión, por ser mi consejera, amiga y pareja.

AGRADECIMIENTOS.

Al Hospital Universitario Erasmo Meoz por darme la oportunidad de desarrollar este proyecto en sus instalaciones.

Al Ingeniero Johnny Omar Medina Durán, por su aporte en el desarrollo del proyecto.

A los docentes del departamento de Electricidad & Electrónica, por sus valiosos aportes en el transcurso de mi formación académica.

Al Ingeniero Álvaro Ch. por sus valiosos aportes.

TABLA DE CONTENIDO

	Pág.
INTRODUCCIÓN.	19
1. PROBLEMA.	20
1.1 Título.	20
1.2 Planteamiento del problema.	20
1.3 Justificación.	21
1.4 Objetivos.	22
1.4.1. Objetivo general.	22
1.4.2. Objetivos específicos.	22
1.5 LIMITACIONES Y DELIMITACIONES.	23
1.5.1 Limitaciones.	23
1.5.2 Delimitaciones.	23
2. MARCO REFERENCIAL	24
2.1 Antecedentes.	24
2.2 Marco teórico.	27
2.2.1 Proceso de automatización.	27
2.2.2 Sistema de llenado.	27
2.2.3 Sistema de lavado.	29
2.2.3.1 Lavado a vapor.	31
2.2.4 Electroválvulas.	33
2.2.5 Sistema de centrifugado.	33
2.2.6 Evacuación de los atuendos hospitalarios.	35

2.2.7 Compresor.	36
2.2.7.1 Compresores de embolo.	37
2.2.8 Controladores lógicos programables (PLC).	37
2.2.9 Motores eléctricos.	38
2.2.1 Variador de velocidad.	41
2.4 MARCO CONTEXTUAL.	41
2.5 MARCO LEGAL.	41
3. DISEÑO METODOLOGICO.	42
3.1 MODALIDAD DE TRABAJO DE GRADO.	42
3.2 DISEÑO DEL SISTEMA DE AUTOMATIZACIÓN Y CONTROL PARA EL PROCESO	
I NDUSTRIAL DE LAVADO EN EL HOSPITAL UNIVERSITARIO ERASMO MEOZ.	42
3.2.1 Introducción al HUEM, a la zona de mantenimiento y área del proyecto.	42
3.2.2 Análisis paso a paso del funcionamiento llevado a cabo por la lavadora	
industrial en el sistema de llenado, lavado y secado.	43
3.2.3 Contactor 1.	43
3.2.4 Contactor 2.	43
3.2.5 Temporizadores.	45
3.2.6 Grupo de relés.	46
3.2.7 Realización del plano esquemático de la lavadora de tipo industrial.	46
3.2.8 Identificación de los actuadores, sistema de poleas y cilindros mecánicos	
que compone el sistema de la lavadora industrial.	47
3.2.9 Cilindro de simple efecto.	
3.2.10 Identificación de sensores.	50

3.2.11 Sensor capacitivo.		
3.2.12 Revisión e identificación del estado del tambor, donde se lleva a cabo		
el proceso de lavado y centrifugado.		
3.2.13 Análisis del sistema de los motores y revisión de las características RPM		
(revoluciones por minutos).		
3.2.14 Revisión del funcionamiento de los dispositivos electromecánicos.	57	
3.2.15 Elegir un variador de velocidad que cumplan con los requerimientos,		
características y parámetros en el desarrollo del proceso.	59	
3.2.16 Parámetros para la elección del variador de velocidad.		
3.2.17 Ventajas de utilizar el variador Altivar 71		
3.2.18 Tarjetas opcionales.	63	
3.2.19 Inversor de giro con Altivar 71.		
3.2.20 Software SoMove.		
3.2.21 Selección del motor asíncrono trifásico.	68	
3.2.21.1 Ventajas de un motor WEG.	70	
3.2.22 Realizar la propuesta del posible tipo de PLC que cumpla con los		
requerimientos del sistema.		
3.2.23 VisiLogic 9.7.0.		
3.2.24 Realizar los algoritmos necesarios para el control del proceso en el PLC		
visión 120-22-R34.	76	
3.2.25 Estudio del diseño que permite el mejoramiento continúo en cada una		
de las partes que integran dicha máquina.		
3.2.26 Final de carrera.		
3.2.27 Socializar el proyecto ante la comunidad educativa.		

4.CONCLUSIONES.	87
5. RECOMENDACIONES.	90
REFERENCIAS	92
ANEXOS	94