

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código FO-SB-12/v0

Página

ESQUEMA HOJA DE RESUMEN

1/1

RESUMEN TRABAJO DE GRADO

AUTOR (ES):

NOMBRE(S): GUILLERMO ALFREDO APELLIDOS: MARTHEYN LIZARAZO

NOMBRE(S): CRISTIAN RICARDO APELLIDOS: RUBIO RAMÍREZ

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: INGENIERÍA MECÁNICA

DIRECTOR:

NOMBRE(S): LUIS EMILIO APELLIDOS: VERA DUARTE

Codirector:

NOMBRE(S): JOSÉ RICARDO APELLIDOS: BERMÚDEZ SANTAELLA

TÍTULO DEL TRABAJO (TESIS): MODELADO MATEMÁTICO Y SIMULACIÓN DEL FUNCIONAMIENTO DE LA CALDERA CONTINENTAL F10C DE 10 BHP UBICADA EN EL LABORATORIO DE PLANTAS TÉRMICAS DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

RESUMEN

En este trabajo se desarrolló el modelo matemático que representa el proceso de transferencia de calor debido a efectos de combustión de ACPM al interior de la caldera pirotubular del laboratorio de plantas térmicas de la Universidad Francisco de Paula Santander, además se elaboró la respectiva simulación del funcionamiento de las dos etapas de la caldera mediante el programa ANSYS donde se conocieron las propiedades de los gases como fracción molar y velocidad de flujo. Con el objetivo de validar los resultados obtenidos por el modelo matemático y simulación se realizaron pruebas experimentales directamente en el recipiente de estudio donde se corroboraron las propiedades térmicas como temperatura de gases a la salida del haz de tubos, temperatura exterior de la coraza y flujo de vapor. Como material de apoyo se dispuso un cartel donde se describe el paso a paso del encendido y estabilización de la caldera.

PALABRAS CLAVE: Ansys, caldera, modelo matemático, simulación, validación.

CARACTERÍSTICAS:

PÁGINAS: 148 PLANOS: ____ ILUSTRACIONES: CD ROOM: 1

Elaboró		Revisó		Aprobó	
Equipo Operativo del Proceso		Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

COPIA NO CONTROLADA

MODELADO MATEMÁTICO Y SIMULACIÓN DEL FUNCIONAMIENTO DE LA CALDERA CONTINENTAL F10C DE 10 BHP UBICADA EN EL LABORATORIO DE PLANTAS TÉRMICAS DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

GUILLERMO ALFREDO MARTHEYN LIZARAZO CRISTIAN RICARDO RUBIO RAMÍREZ

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA

SAN JOSÉ DE CÚCUTA

2016

MODELADO MATEMÁTICO Y SIMULACIÓN DEL FUNCIONAMIENTO DE LA CALDERA CONTINENTAL F10C DE 10 BHP UBICADA EN EL LABORATORIO DE PLANTAS TÉRMICAS DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

GUILLERMO ALFREDO MARTHEYN LIZARAZO CRISTIAN RICARDO RUBIO RAMÍREZ

Trabajo de grado presentado como requisito para optar por el título de:

Ingeniero Mecánico

Director

LUIS EMILIO VERA DUARTE

Mg. Ingeniero Mecánico

Co-Director

JOSÉ RICARDO BERMÚDEZ SANTAELLA

M. Sc. Ingeniero Eléctrico

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA

SAN JOSÉ DE CÚCUTA

2016

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

FECHA:

CÚCUTA, 13 DE JUNIO DEL 2016

HORA:

4:00 p.m.

LUGAR:

FUNDADORES 306 SALA DE SIMULACION

PLAN DE ESTUDIOS: INGENIERIA MECANICA

Título de la Tesis: "MODELADO MATEMATICO Y SIMULACION DEL FUNCIONAMIENTO DE LA CALDERA CONTINENTAL F10C DE 10 BHP UBICADA EN EL LABORATORIO DE PLANTAS TERMICAS DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTADER".

Jurados:

Ing. JESUS BETHSAID PEDROZA ROJAS. Ing. ORLANDO GUTIERREZ LOPEZ Lic. JUAN CARLOS RAMIREZ BERMUDEZ

Director : Codirector: ING. EMILIO VERA DUARTE.

ING. JOSE RICARDO BERMUDEZ SANTAELLA

Nombre del estudiante

Código

Calificación

GUILLERMO ALFREDO MARTHEYN LIZARAZO 1121153 CRISTIAN RICARDO RUBIO RAMIREZ

1121437

Letra Número Cuatro, Cinco Cuatro, Cinco

4,5 4,5

MERITORIA

JESUS BETHSAID PEDROZA ROJAS

Ing. ORLANDO GUTIERREZ LOPEZ

Lic. JUAN CAME RAMIREZ BERMUDEZ

Vo.Bo GONZALO DE LA CRUZ ROMERO GARCIA Coordinador Comité Curricular Ingeniería Mecánica

Contenido

	pág.
Introducción	15
1. Problema	17
1.1 Título	17
1.2 Planteamiento del Problema	17
1.3 Formulación del problema	18
1.4 Justificación	18
1.5 Objetivos	19
1.5.1 Objetivo general	19
1.5.2 Objetivos específicos	19
1.6 Alcances	20
1.7 Delimitaciones	20
2. Marco de Referencia	21
2.1 Antecedentes	21
2.2 Marco Teórico	22
2.2.1 Calderas	22
2.2.2 Clasificación de calderas	23
2.2.3 Partes de una caldera	24
2.2.4 Combustibles usados en calderas	27
2.2.5 Propiedades termodinámicas	28
2.2.6 Estados termodinámicos	30
2.2.7 Mecanismos de transferencia de calor	32
2.2.8 Fundamentos de combustión	32

2.2.9 Ebullición en calderas	34
2.2.10 Materiales para calderas	35
2.2.11 Factores de diseño	36
2.2.12 Teoría de modelos matemáticos	37
2.2.13 Teoría de simulación	39
2.3 Marco Conceptual	45
2.4 Marco Contextual	47
3. Diseño Metodológico	49
3.1 Tipo de Investigación	49
3.2 Fuente de Recolección de Información	49
3.2.1 Fuente primaria	49
3.2.2 Fuente secundaria	49
3.3 Metodología	50
4. Modelo Matemático	51
4.1 Termodinámica Aplicada a las Calderas Pirotubulares Horizontales	52
4.1.1 Balance de energía de la caldera	53
4.2 Combustión en Calderas Pirotubulares Horizontales	55
4.3 Análisis del Quemador en Calderas Pirotubulares Horizontales	58
4.3.1 Balance de energía del quemador	58
4.3.2 Propiedades de los gases de combustión	59
4.4 Producción de Vapor y Eficiencia de una Caldera Pirotubular Horizontal	64
4.5 Transferencia de Calor en Calderas Pirotubulares	65
4.5.1 Transferencia de calor en el hogar de la caldera	65
4.5.2 Transferencia de calor en el haz de tubos de la caldera	76

4.6 Pérdidas de Calor	84
4.6.1 Pérdidas de calor por la coraza	84
4.6.2 Pérdidas por los humos de combustión.	89
4.7 Caídas de Presión	89
4.7.1 Caída de presión en el hogar	90
4.7.2 Caída de presión en el haz de tubos	92
4.7.3 Caída de presión por contracciones abruptas	93
4.7.4 Caída de presión por expansiones abruptas	94
4.8 Tiempo de Estabilización	94
5. Simulación	96
5.1 Simulación de la Combustión en el Hogar	96
5.1.1 Geometría	96
5.1.2 Enmallado	97
5.1.3 Set Up	98
5.2 Simulación de Flujo de Gases en el Turbulador	100
5.2.1 Geometría	100
5.2.2 Enmallado	101
5.2.3 Set Up	102
6. Validación de modelos	104
6.1 Solución del Modelo Matemático	104
6.2 Pruebas Experimentales	107
6.3 Resultados de la Simulación	113
6.3.1 Simulación del hogar	113
6.3.2 Simulación del haz de tubos	117

6.4 Comparación de Resultados	118
7. Control de Encendido de la Caldera	121
8. Conclusiones	123
9. Recomendaciones	125
Referencias Bibliográficas	126
Anexos	131