

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código	FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página

1/1

RESUMEN TRABAJO DE GRADO

AUTOR(ES):

NOMBRE(S): <u>LUIS MIGUEL</u> APELLIDOS: <u>AYALA IBARRA</u>

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: INGENIERÍA CIVIL

DIRECTOR:

NOMBRE(S): <u>GUSTAVO ADOLFO</u> APELLIDOS: <u>CARRILLO SOTO</u>

TÍTULO DEL TRABAJO (TESIS): <u>SIMILITUD HIDROLÓGICA DE CUENCAS EN LA</u> ZONA SUR DE LA REGIÓN ANDINA DE COLOMBIA

RESUMEN

El presente trabajo tuvo como propósito establecer una similitud hidrológica en cuencas de los departamentos Cauca, Huila y Tolima, las cuales se delimitaron y calcularon algunas de sus características geomorfológicas mediante el Software ArcMap. Se necesitó un registro de datos temporales (Mayor a 15 años) de precipitación total mensual, caudal medio diario y caudal medio mensual, siendo estos fundamentales para deducir las firmas hidrológicas que definen similitud hidrológica entre cuencas. A partir de las firmas hidrológicas, se hizo un análisis de agrupamiento (Clustering) con el algoritmo K-means el cuál posteriormente fue evaluado con los parámetros geomorfológicos hallado en el presente trabajo, seguidamente se evaluaron las firmas hidrológicas con método jerárquico árbol de clasificación y regresión, C&RT.

PALABRAS CLAVE: similitud hidrológica, firmas hidrológicas, clustering, k-menas, árbol de clasificación y regresión.

CARACTERISTICAS:

PÁGINAS: 349 PLANOS: __ILUSTRACIONES: 145 CD ROOM: 1

	Elaboró		Revisó		Aprobó
E	Equipo Operativo del Proceso		Comité de Calidad		Comité de Calidad
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

SIMILITUD HIDROLÓGICA DE CUENCAS EN LA ZONA SUR DE LA REGIÓN ANDINA DE COLOMBIA

LUIS MIGUEL AYALA IBARRA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS INGENIERÍA CIVIL SAN JOSÉ DE CÚCUTA

2018

SIMILITUD HIDROLÓGICA DE CUENCAS EN LA ZONA SUR DE LA REGIÓN ANDINA DE COLOMBIA

LUIS MIGUEL AYALA IBARRA

MODALIDAD TRABAJO DESCRIPTIVO

Proyecto presentado como requisito para optar al título de:

INGENIERO CIVIL

Director:

GUSTAVO ADOLFO CARRILLO SOTO

I.C.-MSc.-PhD. en Hidrología

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS INGENIERÍA CIVIL

SAN JOSÉ DE CÚCUTA

NIT. 890500622 - 6

ACTA DE SUSTENTACION DE TRABAJO DE GRADO

FECHA:

17 DE MAYO DE 2018

HORA: 2:00 p.m.

LUGAR:

SALA DE FOTOGRAFIA -- EDIFICIO CREAD - UFPS

PLAN DE ESTUDIOS:

INGENIERIA CIVIL

TITULO DE LA TESIS:

"SIMILITUD HIDROLOGICA DE CUENCAS EN LA ZONA SUR DE LA

REGION ANDINA DE COLOMBIA ".

JURADOS:

ING.

NELSON JAVIER CELY CALIXTO

ING.

EDGAR VILLEGAS PALLARES

DIRECTOR:

INGENIERO GUSTAVO ADOLFO CARRILLO SOTO.

NOMBRE DE LOS ESTUDIANTES:

CODIGO

CALIFICACION

NUMERO

LETRA

LUIS MIGUEL AYALA IBARRA

1111653

45

CUATRO, CINCO

MERITORIA

FIRMA DE LOS JURADOS

ING

NELSON JAVIER CELY CALIXTO

INC

EDGADAULIEGAS DALLADES

Vo. Bo.

JAVIER ALFONSO CARDENAS GUTIERREZ

Coordinador Comité Curricular

Betty M.

Tabla de contenido

In	troducción	27
1.	Problema	29
	1.1. Título	29
	1.2. Planteamiento del problema	29
	1.3. Formulación del problema	29
	1.4. Justificación	30
	1.5. Objetivos	30
	1.5.1. Objetivo General.	30
	1.5.2. Objetivos Específicos.	30
	1.6. Alcances y Limitaciones	30
	1.6.1. Alcances.	30
	1.6.2. Limitaciones.	30
	1.7. Delimitación espacial y temporal	31
2.	Marco de referencia	33
	2.1. Antecedentes	33
	2.1.1. Empíricos.	33
	2.1.2. Bibliográficos.	33
	2.1.2.1. Nacionales.	33
	2.1.2.2. Internacionales.	34

2.2. Marco conceptual	36
2.3. Marco teórico	37
2.3.1. Parámetro adimensional referente a condiciones de similitud geométrica.	38
2.3.2. Parámetro adimensional referente a condiciones de escurrimiento.	39
2.3.3. Parámetro adimensional referente a condiciones de escurrimiento sostenido.	39
2.3.4. Parámetro adimensional orográfico y semejanza dinámica.	40
2.3.5. Parámetro de relación de confluencias promedio y semejanza cinemática.	41
2.3.6. Firmas hidrológicas.	42
2.3.6.1. Coeficiente de escorrentía (CE [-]).	42
2.3.6.2. Pendiente de la curva de duración de caudales (SFDC).	43
2.3.6.3. Índice de flujo base (IFB [-]).	43
2.3.6.4. Elasticidad del caudal (EQP [-]).	45
2.3.6.5. Densidad de ramas ascendentes en el hidrograma (RLD).	46
2.3.7. Polígonos de Thiessen.	46
2.3.8. Modelo de Elevación Digital (DEM).	47
2.3.8.1. Sistema de referencia.	49
2.3.8.1.1. MAGNA-SIRGAS.	50
2.3.8.1.2. WGS84.	53
2.3.8.1.3. UTM.	54
2.3.8.2. Ráster.	57

2.3.8.2.1. Características generales de datos ráster.	59	
2.3.8.2.2. Ubicación de coordenadas en un ráster.	64	
2.3.8.3. Sistemas de Información Geográfica – SIG.	67	
2.3.8.3.1. ArcMap.	68	
2.3.9. TauDEM.		
2.3.9.1. Conjunto de herramientas Basic Grid Analysis.	70	
2.3.9.1.1. Pit Remove.	70	
2.3.9.1.2. D8 Flow Directions.	71	
2.3.9.1.3. D8 Contributing Area.	72	
2.3.9.2. Conjunto de herramientas Stream Network Analysis.	74	
2.3.9.2.1. Stream Drop Analysis (Análisis de caída de flujo).	75	
2.3.9.2.2. Stream Definition By Threshold.	78	
2.3.9.2.3. Stream Reach And Watershed.	78	
2.3.10. Estaciones del IDEAM.	79	
2.3.11. Clustering.	81	
2.3.11.1. Funciones de distancia	82	
2.3.11.2. Algoritmo K-Means	83	
2.3.11.3. Árboles de clasificación y regresión	86	
2.3.12. XLSTAT.		
2.3.12.1. Criterios de clasificación para K-Means Clustering.	88	

2.3.12.2. Métodos de clasificación por medio del análisis de árbol de clasifi	cación y
regresión.	89
2.4. Marco legal	93
3. Diseño metodológico	94
3.1. Línea de investigación	94
3.2. Tipo de investigación	94
3.3. Población y muestra	95
3.3.1. Población.	95
3.3.2. Muestra.	95
3.4. Fuentes para la recolección de la información	96
3.4.1. Fuentes primarias.	96
3.4.2. Fuentes secundarias.	96
4. Estado del arte: Similitud Hidrológica	98
5. Cuencas de estudio	106
6. Parámetros geomorfológicos de las cuencas de estudio	112
6.1. Grande (Riogrande-Cauca [44017050])	113
6.2. Villalobos (Betania-Villalobos [44017140])	116
6.3. Patía (La Fonda [52017030])	119
6.4. Quilcase (El Hoyo [52017120])	122
6.5. Timbío (Pte Colgante Timbío [52017130])	125

6.6. Guachicono (Guachicono [52027010])	128
6.7. Napi (Sangaral [53047010])	131
6.8. Micay (Angostura Rio Micay [530770170])	134
6.9. Chuare (El Mono [53077060])	137
6.10. Hondo (Pte Carretera [26037030])	140
6.11. Cabrera (Carrasposo [21147030])	143
6.12. Guarapas (Pitalito 2 Automática [21017050])	146
6.13. Páez (Paicol Autom [21057060])	149
6.14. La Plata (Vega El Salado [21057050])	152
6.15. Suaza (Pte Garcés automática [21037010])	155
6.16. Yaguara [HDA Venecia Automática [21087080])	158
6.17. Ceibas (Pueblo Nuevo Autom [21117100])	161
6.18. Cuinde (San Pablo Tolima [21167060])	164
6.19. Negro (La Mora Autom [21167080])	167
6.20. Ata (El Condor [22027010])	170
6.21. Saldaña (Piedras de Cobre [22057010])	173
6.22. Combeima (Montezuma [21217180])	176
6.23. Lagunilla (Pte Gato Negro [21257120])	179
6.24. Gualí (La Esperanza [23017040])	182
6.25. San Vicente del Combeima ([San Vicente [21217220])	185

7. Precipitación media mensual	190
7.1. Polígonos de Thiessen de las cuencas hidrográficas seleccionadas	191
7.1.1. Polígonos de Thiessen – Cuenca Grande [44017050]	192
7.1.2. Polígonos de Thiessen – Cuenca Villalobos [44017140]	195
7.1.3. Polígonos de Thiessen – Cuenca Patía [52017030]	198
7.1.4. Polígonos de Thiessen – Cuenca Quilcase [52017120]	201
7.1.5. Polígonos de Thiessen – Cuenca Timbío [52017130]	204
7.1.6. Polígonos de Thiessen – Cuenca Guachicono [52027010]	207
7.1.7. Polígonos de Thiessen – Cuenca Napi [53047010]	210
7.1.8. Polígonos de Thiessen – Cuenca Micay [530770170]	213
7.1.9. Polígonos de Thiessen – Cuenca Chuare [53077060]	216
7.1.10. Polígonos de Thiessen – Cuenca Hondo [26037030]	219
7.1.11. Polígonos de Thiessen – Cuenca Cabrera [21147030]	223
7.1.12. Polígonos de Thiessen – Cuenca Guarapas [21017050]	228
7.1.13. Polígonos de Thiessen – Cuenca Páez [21057060]	232
7.1.14. Polígonos de Thiessen – Cuenca La Plata [21057050]	236
7.1.15. Polígonos de Thiessen – Cuenca Suaza [21037010]	240
7.1.16. Polígonos de Thiessen – Cuenca Yaguara [21087080]	244
7.1.17. Polígonos de Thiessen – Cuenca Ceibas [21117100]	248
7.1.18. Polígonos de Thiessen – Cuenca Cuinde [21167060]	252

7.1.19. Polígonos de Thiessen – Cuenca Negro [21167080]	256
7.1.20. Polígonos de Thiessen – Cuenca Ata [22027010]	259
7.1.21. Polígonos de Thiessen – Cuenca Saldaña [22057010]	262
7.1.22. Polígonos de Thiessen – Cuenca Combeima [21217180]	266
7.1.23. Polígonos de Thiessen – Cuenca Lagunilla [21257120]	269
7.1.24. Polígonos de Thiessen – Cuenca Gualí [23017040]	272
7.1.25. Polígonos de Thiessen – Cuenca San Vicente del Combeima [21217220]	275
8. Firmas hidrológicas de las cuencas seleccionadas	280
9. Similitud hidrológica de las cuencas seleccionadas	284
9.1. Agrupamiento por algoritmo K-Means para las firmas hidrológicas propuestas	284
9.1.1. K-Means para el agrupamiento del Índice de Flujo Base (IFB).	287
9.1.2. K-Means para el agrupamiento de la Densidad de Ramas Ascendentes en el	
Hidrograma (RLD).	295
9.1.3. K-Means para el agrupamiento de la Pendiente de la Curva de Duración de	
Caudales (SFDC).	304
9.1.4. K-Means para el agrupamiento del Coeficiente de Escorrentía (CE).	313
9.1.5. K-Means para el agrupamiento de la elasticidad de caudal (EQP).	323
9.2. Árboles de clasificación y regresión para las firmas hidrológicas propuestas	332
10. Conclusiones	336
11. Recomendaciones	340