

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER DIVISIÓN BIBLIOTECA EDUARDO COTE LAMUS RESUMEN TRABAJO DE GRADO

AUTORES:

NOMBRES: FRANCISCO JOSE	APELLIDOS: COGOLLO VILLAMIZAR	
NOMBRES: ZURY ANDREINA	APELLIDOS: ORDUZ SEPULVEDA	
FACULTAD: <u>INGENIERIA</u>		
PLAN DE ESTUDIOS: INGENIERÍA	CIVIL	
DIRECTOR:		
NOMBRES: ALDER DIDIER	APELLIDOS: AVELLANEDA CARVAJALINO	
TÍTULO DEL TRABAJO (TESIS): <u>I</u>	<u>DIAGNOSTICO Y PROPUESTA DE RESTAURACION</u>	
	<u>CONAL EN LA CARRERA 7 ENTRE CALLES 9 Y 10</u>	
BARRIO CENTRO – LA PALMITA, M	MUNICIPIO DE VILLA DEL ROSARIO	
RESUMEN:		
En este proyecto se analizó el compo	ortamiento en servicio y desgaste de la estructura que	
1 1 1	misma, se plantearon alternativas de construcción de	
	ectuó el análisis de cargas recomendado para este tipo	
	lizó el estudio de resistencia del concreto armado,	
	e socavación y se estudiaron las normas vigentes de	
diseño y construcción de puentes y ven	r si la estructura cumple.	
	imetros y elementos necesarios para una posible	
I	no determinar si la problemática en el pavimento se	
debió a alguna falla estructural por parte del puente, entre otros.		
D 1 1 1 C		
Palabras claves: aforos, restauración, e	estructura, resistencia, geotécnico, hidrológico.	
CARACTERISTICAS:		
CHACILIBITEAS.		
PÁGINAS: 198 PLANOS:	ILUSTRACIONES:CD ROOM: 1	
		

DIAGNOSTICO Y PROPUESTA DE RESTAURACION DEL PUENTE VEHICULAR Y PEATONAL EN LA CARRERA 7 ENTRE CALLES 9 Y 10, BARRIO CENTRO – LA PALMITA, MUNICIPIO DE VILLA DEL ROSARIO

FRANCISCO JOSE COGOLLO VILLAMIZAR ZURY ANDREINA ORDUZ SEPULVEDA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA PLAN DE ESTUDIOS DE INGENIERÍA CIVIL SAN JOSÉ DE CÚCUTA

2015

DIAGNOSTICO Y PROPUESTA DE RESTAURACION DEL PUENTE VEHICULAR Y PEATONAL EN LA CARRERA 7 ENTRE CALLES 9 Y 10, BARRIO CENTRO – LA PALMITA, MUNICIPIO DE VILLA DEL ROSARIO

FRANCISCO JOSE COGOLLO VILLAMIZAR ZURY ANDREINA ORDUZ SEPULVEDA

Trabajo de grado presentado como requisito para optar al título de:

Ingeniero civil

Director:

ALDER DIDIER AVELLANEDA CARVAJALINO

Ingeniero Civil, Especialista en Estructuras.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERIA

PLAN DE ESTUDIOS DE INGENIERÍA CIVIL

SAN JOSÉ DE CÚCUTA

2015

www.ufps.edu.co

ACTA DE SUSTENTACION DE TRABAJO DE GRADO

FECHA:

30 DE JUNIO DE 2015

HORA: 4:00 p. m.

LUGAR:

SALA 4 – TERCER PISO EDIFICIO CREAD - UFPS

PLAN DE ESTUDIOS:

INGENIERIA CIVIL

TITULO DE LA TESIS:

"DIAGNOSTICO Y PROPUESTA DE RESTAURACION DEL PUENTE VEHICULAR Y PEATONAL EN LA CARRERA 7 ENTRE CALLES 9 Y 10. BARRIO CENTRO - LA PALMITA, MUNICIPIO DE VILLA DEL

ROSARIO".

JURADOS:

ING. JOSE RAFAEL CACERES RUBIO

ING. FIDEL ERNESTO CUBEROS CUBEROS

DIRECTOR:

INGENIERO ALDER DIDIER AVELLANEDA CARVAJALINO.

NOMBRE DE LOS ESTUDIANTES:

CODIGO

CALIFICACION

FRANCISCO JOSE COGOLLO VILLAMIZAR ZURY ANDREINA ORDUZ SEPULVEDA

1110565 1110586 NUMERO LETRA

CUATRO, CUATRO CUATRO, CUATRO

APROBADA

FIRMA DE LOS JURADOS

Vo. Bo.

ING. JOS.

dinador Comité Curricular

Av. Gran Colombia No. 12E-96 Colsag Teléfono: 5776655 Cúcuta - Colombia

FACULTAD DE INGENIERIA

Contenido

	pág.
Introducción	20
1. El Problema	22
1.1 Título	22
1.2 Planteamiento del Problema	22
1.3 Formulación del Problema	22
1.4 Objetivos	23
1.4.1 Objetivo general	23
1.4.2 Objetivos específicos	23
1.5 Delimitaciones	24
1.5.1 Delimitación espacial	24
1.5.2 Delimitación temporal	25
1.5.3 Delimitación conceptual	25
1.6 Alcances y Limitaciones	25
1.6.1 Alcances	25
1.6.2 Limitaciones	26
2. Marco de Referencia	27
2.1 Antecedentes	27
2.2 Marco Contextual	30
2.1.1 Información general	30
2.2.2 Información del sector	31
2.3 Bases Teóricas y Conceptuales	32

	2.3.1 Clasificación de los puentes	32
	2.3.1.1 Según el material	32
	2.3.1.2 Según el obstáculo que salva	33
	2.3.1.3 Según el sistema estructural predominante	33
	2.3.1.4 Según su uso	34
	2.3.1.5 Según el sistema constructivo	34
	2.3.1.6 Según la ubicación de la calzada	35
	2.3.2 Análisis estructural de puentes arco de fábrica	36
	2.4 Marco Conceptual	42
	2.5 Marco Legal	44
3. 1	Metodología	47
	3.1 Tipo de Investigación	47
	3.2 Población y Muestra	47
	3.2.1 Población	47
	3.2.2 Muestra	47
	3.3 Instrumentos de Recolección	47
	3.4 Etapas a Cumplir en el Desarrollo del Proyecto	48
4. I	Resultados y Discusiones del Proyecto	50
	4.1 Parámetros Morfométricos de la Cuenca	50
	4.1.1 Área de drenaje	50
	4.1.2 Perímetro de la cuenca	50
	4.1.3 Pendiente media del cauce principal	50
	4.1.4 Longitud del cauce principal	51

4.1.4.1 Referenciación	55
5. Estudio de Suelos	57
5.1 Aspectos del Proyecto	57
5.1.1 Nombre	57
5.1.2 Objeto del estudio	57
5.1.3 Localización del proyecto	57
5.1.4 Descripción general del proyecto	57
5.1.5 Sistema estructural	57
5.2 Aspectos del Subsuelo	58
5.2.1 Geomorfología del terreno y geología de la zona	58
5.2.2 Características generales físico – mecánicas del subsuelo	62
5.2.3 Sismicidad regional	62
5.2.3.1 Fuentes sismogénicas	62
5.2.3.2 Amenaza sísmica de la zona	63
5.3 Descripción Visual del Suelo	65
5.3.1 Apique	65
5.3.2 Conformación de los suelos	65
5.3.2.1 Resumen de las características del suelo	65
5.3.2.2 Características físicas del suelo	66
5.3.2.3 Exploración del subsuelo	66
5.3.2.4 Niveles de agua subterránea	67
5.4 Análisis Geotécnicos	67
5.4.1 Humedad natural	67

5.4.2 Granulometría	68
5.4.2.1 Clasificación por SUCS	69
5.4.3 Determinación del ensayo de corte directo	71
5.4.4 Determinación de la capacidad portante del suelo	73
5.4.5 Asentamientos y modulo de elasticidad del suelo	75
5.4.6 Resumen	76
6. Estudio Hidrológico	78
6.1 Conceptos Básicos Para Diseño	78
6.1.1 Características de la zona	78
6.1.2 Frecuencia – intensidad - duración de las lluvias	80
6.1.3 Tiempo de concentración	81
6.1.4 Estimación de caudal	81
6.2 Análisis de Precipitaciones en La Cuenca	81
6.2.1 Determinación de precipitaciones máximas para diferentes periodos de retorno	
con los datos de la estación 16010010, Villa del Rosario	85
6.2.2 Determinación del periodo de retorno	85
6.2.3 Cálculo de la desviación estándar	86
6.2.4 Precipitaciones máximas probables con duración de 24 horas	87
6.3 Curvas Intensidad Duración Frecuencia de La Zona	87
6.4 Calculo de Caudales Máximos por el Método Racional Modificado	89
6.4.1 Coeficiente de escorrentía	90
6.4.2 Tiempo de concentración de la lluvia	91
6.5 Caudal Máximo en la Zona de Estudio	92

	93 95 98
7.2 Resultados análisis hidráulico y de socavación	
-	98
8. Aforo Manual de Movilidad	
8.1 Tipos de Vehículos	98
8.2 Determinación del Tránsito Promedio Diario (TPD)	00
8.2.1 Tránsito existente	00
9. Diagnóstico del Puente Existente	01
9.1 Alcance del Estudio	01
9.2 Sistema Estructural Puente Existente	01
9.3 Documentación Existente	03
9.4 Estado Actual	03
9.5 Inspección	03
9.6 Estudio de Suelos	04
9.7 Análisis de la Estructura	04
9.8 Diagnóstico General del Puente	04
9.8.1 Carpeta de rodamiento	05
9.8.2 Losa del tablero	05
9.8.3 Apoyos del puente	05
9.8.4 Aletas o muros	05
9.8.5 Accesos	05
9.8.6 Barandas	06
9.8.7 Resumen de evaluación de daño en el puente	06

	9.9 Análisis Estructural y Memorias de Cálculo	107
	9.9.1 Introducción	107
	9.9.2 Metodología y análisis	107
	9.9.3 Materiales y características	108
	9.9.4 Datos de geometría	110
	9.9.5 Las cargas de diseño	120
	9.9.6 Diagrama de tensiones en los elementos del puente con apoyos firmes	123
	9.9.7 Diagrama de tensiones en los elementos del puente con un apoyo débil	126
	9.9.8 Comportamiento hidráulico del puente	126
10.	Condiciones de Carga y Diseño	130
	10.1 Cargas de Diseño	130
	10.2 Cargas Permanentes	132
	10.2.1 Cargas permanentes (muertas) DC, DW y EV	132
	10.2.2 Cargas de suelo: EH, ES y DD	132
	10.3 Cargas Transitorias (cargas vivas)	133
	10.3.1 Sobrecargas gravitatorias: LL y PL	133
	10.3.1.1 Carga viva vehicular	133
	10.3.1.2 Camión de diseño	135
	10.3.1.3 Tandem de diseño	136
	10.3.1.4 Carga del carril de diseño	136
	10.3.1.5 Área de contacto de la llanta	137
	10.3.2 Aplicación de la carga viva vehicular de diseño	137
	10.3.2.1 Carga para el vuelo del tablero	137

	10.3.3 Carga de fatiga	138
	10.3.4 Cargas peatonales: PL	138
10.4	4 Incremento por carga dinámica: IM	138
10.5	5 Fuerzas Centrigufas: CE	139
10.6	6 Fuerza de Frenado: BR	139
10.7	7 Fuerza de Colisión de un Vehículo: CT	140
10	0.7.1 Protección de estructuras.	140
10.8	8 Carga de viento: WL y WS	140
10	0.8.1 Presión horizontal del viento	140
10	0.8.2 Presión del viento sobre las estructuras: WS	141
10	0.8.3 Cargas de las superestructuras	141
	10.8.3.1 Fuerzas aplicadas directamente a la subestructura	142
10	0.8.4 Presión del viento sobre los vehículos: WL.	142
10	0.8.5 Presión vertical del viento.	143
10.9	9 Empuje del suelo: EH, ES y LS	143
10	0.9.1 Compactación	144
10	0.9.2 Presencia de agua	144
10	0.9.3 Empuje del suelo: EH	146
10	0.9.4 Sobrecarga uniforme: ES	146
10	0.9.5 Sobrecarga viva: LS	146
10.	10 Análisis de Mononobe – OKABE	147
10.	11 Temperatura Uniforme: TU	150
10.	12 Efectos Sísmicos: EQ	150

10.13 Diseño Estructural Puente de Estudio	153
10.13.1 Método LRFD	153
10.13.2 Diseño estructural	158
11. Conclusiones	159
12. Recomendaciones	161
Bibliografía	162
Anexos	163