	GESTIÓN DE SERVICIOS ACADÉMICOS Y BIBLIOTECARIOS		CÓDIGO	FO-GS-15	
			VERSIÓN	02	
	ESQUEMA HOJA DE RESUMEN		FECHA	03/04/2017	
Vigilada Mineducación			PÁGINA	1 de 103	
ELABORÔ		REVISÓ	APROBÓ)	
Jefe División de Biblioteca		Equipo Operativo de Calidad	Líder de Ca	Líder de Calidad	

RESUMEN TRABAJO DE GRADO

AUTOR(ES): CARLOS ALEJANDRO VILLAMIZAR MORALES

FACULTAD: <u>INGENIERIA</u>

PLAN DE ESTUDIOS: <u>INGENIERIA ELECTROMECANICA</u>

DIRECTOR: MSc. (C) GLORIA ESMERALDA SANDOVAL MARTÍNEZ

TÍTULO DEL TRABAJO (TESIS): "SELECCIÓN DE UN SISTEMA DE COMPENSACIÓN DE FALLAS QUE SE PRESENTAN EN EL SUMINISTRO ELÉCTRICO QUE AFECTAN LA PRODUCCIÓN EN CERAMICA ITALIA S.A."

Este proyecto tiene como fin, realizar el estudio y análisis de selección de un sistema de compensación de fallas, para evitar las fallas que se presentan comúnmente en el suministro eléctrico que alimenta la planta de producción en Cerámica Italia S.A. En el estudio se debe tener en cuenta la caracterización de las fallas que comúnmente se presentan en la empresa y que afectan en gran magnitud la continuidad del proceso de producción de cerámica y que además afecta el factor económico de la empresa referente a los costos de producción. Otro propósito de este estudio es encontrar un equipo de que adecue a estas fallas presentadas con frecuencia y que además de detectarlas sea capaz de corregirlas en un lapso de tiempo corto, es decir, que no cause algún daño directo a la planta de Cerámica Italia S.A; teniendo en cuenta que el costo de implementación de este equipo se vea reflejado en el tiempo de recuperación de la inversión, basándose en las pérdidas económicas que estas fallas del suministro eléctrico han generado a lo largo de los años a la empresa.

PALABRAS CLAVES: Sistemas, suministro, magnitud, frecuencia, eléctrico.

CARACTERISTICAS:

PÁGINAS: 103 PLANOS:_ILUSTRACIONES: ____ CD ROOM: 1

SELECCIÓN DE UN SISTEMA DE COMPENSACIÓN DE FALLAS QUE SE PRESENTAN EN EL SUMINISTRO ELÉCTRICO QUE AFECTAN LA PRODUCCIÓN EN CERAMICA ITALIA S.A.

CARLOS ALEJANDRO VILLAMIZAR MORALES

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS DE INGENIERÍA ELECTROMECÁNICA SAN JOSÉ DE CÚCUTA

2020

SELECCIÓN DE UN SISTEMA DE COMPENSACIÓN DE FALLAS QUE SE PRESENTAN EN EL SUMINISTRO ELÉCTRICO QUE AFECTAN LA PRODUCCIÓN EN CERAMICA ITALIA S.A.

CARLOS ALEJANDRO VILLAMIZAR MORALES

Proyecto presentado como requisito para optar por el título de ingeniero electromecánico

Director

ING. MSc. GLORIA ESMERALDA SANDOVAL MARTÍNEZ

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA ELECTROMECÁNICA

SAN JOSÉ DE CÚCUTA

2020

ACTA DE SUSTENTACIÓN PROYECTO DE GRADO MODALIDAD TRABAJO DIRIGIDO

FECHA: 25 de septiembre de 2020

HORA: 2pm

LUGAR: Sustentación Virtual

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

TITULO DEL TRABAJO DE GRADO: "SELECCIÓN DE UN SISTEMA DE COMPENSACIÓN DE FALLAS QUE SE PRESENTAN EN EL SUMINISTRO ELÉCTRICO QUE AFECTAN LA PRODUCCIÓN EN CERÁMICA ITALIA S.A."

JURADOS

Ing: LUIS RODOLFO DAVILA MÁRQUEZ

Ing: GERMAN ENRIQUE GALLEGO RODRIGUEZ

DIRIGIDO:

Ing. GLORIA ESMERALDA SANDOVAL MARTINEZ

APROBADA

NOMBRES DE LOS ESTUDIANTES:

CÓDIGO

CALIFICACION

CARLOS ALEJANDRO VILLAMIZAR MORALES

1091190

44

FIRMA DE LOS JURADOS:

Om P.40

VOBO. COORDINADOR COMITÉ CURRICULAR

an with the first field

fair R Don't &

Tageles Ct.

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

Resumen

Este proyecto tiene como fin, realizar el estudio y análisis de selección de un sistema de compensación de fallas, para evitar las fallas que se presentan comúnmente en el suministro eléctrico que alimenta la planta de producción en Cerámica Italia S.A.

En el estudio se debe tener en cuenta la caracterización de las fallas que comúnmente se presentan en la empresa y que afectan en gran magnitud la continuidad del proceso de producción de cerámica y que además afecta el factor económico de la empresa referente a los costos de producción.

Otro propósito de este estudio es encontrar un equipo de que adecue a estas fallas presentadas con frecuencia y que además de detectarlas sea capaz de corregirlas en un lapso de tiempo corto, es decir, que no cause algún daño directo a la planta de Cerámica Italia S.A; teniendo en cuenta que el costo de implementación de este equipo se vea reflejado en el tiempo de recuperación de la inversión, basándose en las pérdidas económicas que estas fallas del suministro eléctrico han generado a lo largo de los años a la empresa.

Contenido

1. Problema		14
	1.1. Titulo	14
	1.2. Planteamiento Del Problema	14
	1.3. Formulación Del Problema	16
	1.4. Objetivos	16
	1.4.1. Objetivo General	16
	1.4.2. Objetivos Específicos	16
	1.5. Justificación	17
	1.6. Alcance Y Limitaciones	18
	1.6.1. Alcance.	18
	1.6.2. Limitaciones.	19
	1.7. Delimitaciones	19
	1.7.1. Delimitación Temporal.	19
	1.7.2. Delimitación Espacial.	19
2.	Marco Referencial	20
	2.1. Antecedentes	20
	2.2. Marco Contextual	23
	2.3. Marco Conceptual	24

	2.4. Marco Teórico	25
	2.4.1. Instalaciones Eléctricas.	25
	2.4.2. Perturbaciones De Tensión.	26
	2.4.3. Caídas De Tensión (SAG).	27
	2.4.4. Sobretensión (SWEEL).	28
	2.4.5. Cortes De Tensión.	29
	2.4.6. Horno Industrial.	30
	2.4.7. Válvulas Reguladoras De Gas.	32
	2.4.8. Quemadores.	32
	2.4.9. Termopares.	33
	2.4.10. Aspiración De Humos.	33
	2.4.11. Aire De Combustión.	33
	2.4.12. Enfriamiento Directo.	33
	2.4.13. Aspiración Enfriamiento Indirecto.	33
	2.4.14. Enfriamiento Contracorriente.	34
	2.4.15. Enfriamiento Final.	34
	2.4.16. Aspiración Aire Caliente Del Enfriamiento Final.	34
3. Diseño Metodologico		35
	3.1. Población Y Muestra	35
	3.1.1. Población.	35

3.1.2. Muestra.	35
3.2. Tipo De Investigación	35
3.3. Universo	35
3.4. Instrumento Para La Recolección De Información	36
3.4.1. Fuentes Primarias.	36
3.4.2. Fuentes Secundarias.	36
3.5. Actividad Y Metodología	36
4. Análisis Y Resultados	40
4.1. Fallas Presentadas En El Área De Producción Según Su Categoría	40
4.1.1. Corte De Tensión.	40
4.1.2. Caídas Y Altos De Tensión.	45
5. Caracterización De Los Hornos De Producción	52
6. Perdidas Económicas Producidas Por Las Fallas Del Sistema Eléctrico.	61
6.1. Pérdidas De Producción Y Por Consumo Energético En El Año 2013.	65
6.2. Pérdidas De Producción Y Por Consumo Energético En El Año 2014.	67
6.3. Pérdidas de producción y por consumo energético en el año 2015	69
6.4. Pérdidas De Producción Y Por Consumo Energético En El Año 2016.	71
6.5. Pérdidas De Producción Y Por Consumo Energético En El Año 2017.	73
6.6. Pérdidas De Producción Y Por Consumo Energético En El Año 2018.	75
6.7. Pérdidas De Producción Y Por Consumo Energético En El Año 2019.	77

7. Selección Del Equipo Adecuado Para La Corrección De Fallas	
8. Presupuesto	90
Conclusiones	92
Recomendaciones	93
Referencias Bibliográficas	
Anexos	96