	GESTIÓN DE SERVICIOS ACADÉMICOS Y BIBLIOTECARIOS		CÓDIGO	FO-GS-15	
			VERSIÓN	02	
	ESQUEMA HOJA DE RESUMEN		FECHA	03/04/2017	
			PÁGINA	1 de 1	
Vigilada Mineducación ELABORÓ		REVISÓ		APROBÓ	
Jefe División de Bibl	ioteca	Equipo Operativo de Calidad	L	Líder de Calidad	

RESUMEN TRABAJO DE GRADO

AUTOR(ES): NOMBRES Y APELLIDOS COMPLETOS

NOMBRE(S): JOSE DANILO APELLIDOS: CRISTANCHO DURAN

NOMBRE(S): MARIO FERNANDO APELLIDOS: PARADA MORA

FACULTAD: INGENIERÍA

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

DIRECTOR:

NOMBRE(S): GLORIA ESMERALDA APELLIDOS: SANDOVAL MARTINEZ

TÍTULO DEL TRABAJO (TESIS): <u>DISEÑO DE UN SISTEMA DE GENERACIÓN DE ENERGÍA</u>

ELECTRICA NO CONVENCIONAL CONECTADO A LA RED PARA EL EDIFICIO TORRE

ADMINISTRATIVA BLOQUE B DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

Este documento, presenta el diseño de un sistema eólico-fotovoltaico conectado a la red, acorde a la carga eléctrica y al área superior del edificio torre administrativa bloque B de la Universidad Francisco De Paula Santander con sede central en la ciudad de Cúcuta, con el fin de impulsar este tipo de proyectos en base a su viabilidad, al desarrollo tecnológico y los beneficios ambientales que traen consigo. El desarrollo de este, se llevó a cabo en primer lugar; evaluando y determinando el estado del sistema eléctrico del edificio en base a la normativa técnica vigente en Colombia, lo cual contribuye a una mejor eficiencia del sistema de generación diseñado. En cuanto al dimensionamiento se tuvo en cuenta información recolectada respecto al consumo energético del edificio y estudios de radiación solar fotovoltaica y de potencial eólico incidente sobre el mismo, lo que permitió conocer la demanda de energía y las condiciones meteorológicas a la cuales se encuentra sometido el edificio. Y finalmente se presentan las propuestas con diseños definidos, presupuesto y viabilidad de cada uno de ellos.

PALABRAS CLAVES: DISEÑO, RADIACIÓN SOLAR, POTENCIAL EÓLICO, ENERGÍA CARACTERÍSTICAS:

PÁGINAS: 182 PLANOS: ILUSTRACIONES: 52 CD ROOM: 1

Copia No Controlada

DISEÑO DE UN SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA NO CONVENCIONAL CONECTADO A LA RED PARA EL EDIFICIO TORRE ADMINISTRATIVA BLOQUE B DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

JOSÉ DANILO CRISTANCHO DURÁN MARIO FERNANDO PARADA MORA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS INGENIERÍA ELECTROMECÁNICA

SAN JOSÉ DE CÚCUTA

DISEÑO DE UN SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA NO CONVENCIONAL CONECTADO A LA RED PARA EL EDIFICIO TORRE ADMINISTRATIVA BLOQUE B DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

JOSÉ DANILO CRISTANCHO DURÁN MARIO FERNANDO PARADA MORA

Trabajo de grado presentado como requisito para optar por el título de Ingenieros

Electromecánicos

Directora:

GLORIA ESMERALDA SANDOVAL MARTÍNEZ

Ingeniera Electromecánica

Especialista en gerencia de recursos energéticos

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA ELECTROMECÁNICA

SAN JOSÉ DE CÚCUTA

2020

NIT. 890500622 - 6

ACTA DE SUSTENTACIÓN PROYECTO DE GRADO MODALIDAD TRABAJO INVESTIGATIVO

FECHA: 5 de junio de 2020 **HORA**:14-16

LUGAR: Sustentación Virtual

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

JURADOS Ing. RONI MAURICIO JAYA CAMACHO

Ing. LUIS FERNANDO BUSTOS MÁRQUEZ Esp:

GIOVANNY RAMÍREZ AYALA

DIRIGIDO: Ing. GLORIA ESMERALDA SANDOVAL

MARTÍNEZ

TITULO DEL TRABAJO DE GRADO: "DISEÑO DE UN SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA NO CONVENCIONAL CONECTADO A LA RED PARA EL EDIFICIO TORRE ADMINISTRATIVA BLOQUE B DE LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER."

APROBADA

NOMBRES DE LOS ESTUDIANTES:CÓDIGOCALIFICACIÓNJOSÉ DANILO CRISTANCHO DURÁN10910514.4MARIO FERNANDO PARADA MORA10913604.4

timent

FIRMA DE LOS JURADOS:

VOBO. COORDINADOR COMITÉCURRICULAR

Ingemeria (III)
IM MSC PEDRO (JOSE PARTINO CARDENAS.
Coordinado Programa Ingenieria Electromecánica ingelectromecánica@ufsps.edu.co Ext. 121

Mayerline CH

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

Creada mediante decreto 323 de 1970

Dedicatoria

Como autores dedicamos este logro principalmente a nuestros padres, hermanos, familiares, y amigos más cercanos que han sido apoyo incondicional y que han aportado a su manera un granito de arena a lo largo de nuestra formación como ingenieros electromecánicos. También se lo dedicamos a todos nuestros compañeros de ingeniería electromecánica con el fin de darles una voz de aliento y decirles que no desistan de sus sueños, que la universidad; así como en la vida, en muchas ocasiones, el camino suele ponerse difícil pero no imposible y esperamos que al llegar a esta instancia donde actualmente nos encontramos puedan apreciar este arte, esta profesión con el mismo amor y respeto con que nosotros aprendimos a hacerlo.

Agradecimientos

Agradecer primero a Dios y la virgen; por darnos salud y vida, para obtener este logro, en segundo lugar, a nuestros padres; por su amor y apoyo incondicional en todas las formas posibles, a nuestros hermanos y familiares, por dar ese apoyo moral a cada momento y a nuestros amigos y compañeros de estudio por su motivación día tras día, por estar incondicionalmente compartiendo con nosotros sus conocimientos y brindando buenos momentos con la intención de vernos cumplir nuestro sueño de ser ingenieros, a todos ellos por ser quienes aportaron valores y virtudes que hoy y siempre pondremos en práctica.

A la directora, la Ingeniera Especialista Gloria Esmeralda Sandoval Martínez por asumir la dirección de este proyecto y acompañarnos profesionalmente en el desarrollo del mismo y a todos aquellos docentes que aportaron sus conocimientos, su paciencia, su sabiduría y experiencia, con el deseo ferviente de que en un tiempo futuro no sea desperdiciado nuestro talento humano y profesional en el campo de acción.

A la Universidad Francisco De Paula Santander por brindarnos un espacio maravilloso, donde vivimos momentos muy simbólicos en nuestras vidas aportando al desarrollo como personas y profesionales que al pasar los años genero un sentido de pertenecía por el alma mater y por la región.

Resumen

Este documento, presenta el diseño de un sistema eólico-fotovoltaico conectado a la red, acorde a la carga eléctrica y al área superior del edificio torre administrativa bloque B de la Universidad Francisco De Paula Santander con sede central en la ciudad de Cúcuta, con el fin de impulsar este tipo de proyectos en base a su viabilidad, al desarrollo tecnológico y los beneficios ambientales que traen consigo. El desarrollo de este, se llevó a cabo en primer lugar; evaluando y determinando el estado del sistema eléctrico del edificio en base a la normativa técnica vigente en Colombia, lo cual contribuye a una mejor eficiencia del sistema de generación diseñado. En cuanto al dimensionamiento se tuvo en cuenta información recolectada respecto al consumo energético del edificio y estudios de radiación solar fotovoltaica y de potencial eólico incidente sobre el mismo, lo que permitió conocer la demanda de energía y las condiciones meteorológicas a la cuales se encuentra sometido el edificio. Y finalmente se presentan las propuestas con diseños definidos, presupuesto y viabilidad de cada uno de ellos.

CONTENIDO

	Pág.
Introducción	21
1. Titulo	23
1.1. Planteamiento del problema	23
1.2. Formulación del problema	25
1.3. Objetivos	25
1.3.1. Objetivo General	25
1.3.2. Objetivos Específicos	25
1.4. Justificación	26
1.5. Alcances y limitaciones	28
1.5.1. Alcances	28
1.5.2. Limitaciones	29
2. Marco referencial	30
2.1. Antecedentes	30
2.2. Marco teórico	35
2.2.1. Diseño y dimensionamiento solar fotovoltaico	35
2.2.1.1. Sistema de generación fotovoltaica	35
2.2.2. Diseño y dimensionamiento eólico	44
2.2.2.1. Sistema de generación eólico	45
2.2.2.2. Emplazamiento	48
2.2.2.3. Tamaño del aerogenerador	48

2.3. Marco conceptual	49
2.4. Marco legal	56
2.5. Marco contextual	58
3. Desarrollo de la propuesta	59
3.1. Tipo de investigación	59
3.2. Análisis de la información	59
3.3. Recopilación de información de radiación solar y el potencial eólico respecto a la	60
ubicación geográfica de la torre administrativa bloque B	
3.3.1. Radiación solar	60
3.3.2 Potencial eólico	68
3.4. Mediciones de radiación solar y el potencial eólico incidente sobre la torre	73
administrativa bloque B	
3.4.1. Radiación solar	73
3.4.2. Potencial eólico	78
3.5. Recopilación de información existente de consumo y estudio del sistema	80
eléctrico del edificio de estudio	
3.6. Evaluación de la carga y elementos que componen el sistema eléctrico de la torre	83
administrativa bloque B	
3.7. Estudio de cargas de la torre administrativa bloque B	111
3.8. Evaluación de la normativa a aplicar al diseño de generación no convencional	114
conectado a la red	

4. Diseño de sistemas de generación de energía eléctrica no convencional conectado a	117
la red	
4.1. Criterios de diseño	117
4.1.1. Tablero de distribución	117
4.1.2. Banco de baterías	117
4.1.3. Selección de módulos solares	118
4.1.4. Selección del inversor	118
4.2. Diseño 1 "Diseño Solar Fotovoltaico 100% de capacidad del edificio"	118
4.3. Diseño 2 "Diseño Solar Fotovoltaico 100% de capacidad del primer piso"	127
4.4. Diseño 3 "Diseño Solar Fotovoltaico respecto al área disponible	135
4.5. Diseño 4 "Diseño sistema eólico"	142
4.5.1. Diseño con generador EOLOS-V-5KW	142
4.5.2. Diseño con generador EOLOS-V-10KW	146
4.6. Diseño definitivo	149
4.6.1. Diseño	149
4.6.2. Diagrama unifilar	151
4.6.3. Diagrama 3D	152
4.6.4. Beneficios	153
4.6.5. Proceso de conexión del sistema	154
4.6.6. Viabilidad	155
5. Presupuesto	158
6.Conclusiones	161
7.Recomendaciones	163

Referencias Bibliográficas	165
Anexos	167