

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS Código FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página 1/150

RESUMEN TRABAJO DE GRADO

NOMBRE(S): ERICK DANIEL APELLIDOS: RINCÓN CASTRILLO

FACULTAD: <u>INGENIERÍA</u>

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

DIRECTOR: M.Sc. JOSÉ RICARDO BERMÚDEZ SANTAELLA

TÍTULO DEL TRABAJO (TESIS): "MODELAMIENTO Y DISEÑO DE LA ESTRATEGIA

DE CONTROL DE UNA CELDA ELECTROLÍTICA QUE PRODUCE OXIHIDRÓGENO

COMO COMBUSTIBLE COMPLEMENTARIO"

RESUMEN

Las celdas electrolíticas han impactado la industria automotriz, utilizándose para enriquecer motores a gasolina, y diesel con derivados de la electrólisis (H_2 , O_2 , y HHO), provocando una disminución en los gases de combustión (CO, y CO_2), en consecuencia, es necesario un estudio de los electrolizadores enfocado en el cambio de fase. En este trabajo se presenta el modelo dinámico de una celda electrolítica seca comercial que produce oxihidrógeno con una capacidad máxima de 2,25 L/min, las ecuaciones se plantearon teniendo en cuenta las leyes de la termodinámica fundamental, relaciones empíricas de corriente — voltaje, también se ha desarrollado un modelo térmico por medio del balance de energía en el electrolizador que tiene en cuenta la energía aportada por el electrolito (KOH o $NaHCO_3$) contrario a los modelos encontrados en la literatura de electrolizadores. Los datos experimentales corroboraron que, cuando aumenta la cantidad de electrolito suministrado, el paso de la corriente, la temperatura y el caudal de oxihidrógeno en la celda son directamente proporcionales a esta variación, este comportamiento fue predicho por la simulación.

PALABRAS CLAVE: Modelo matemático, celda electrolítica, electrolito, estrategia de control, interfaz de monitoreo.

CARACTERISTICAS:

PÁGINAS: 150 PLANOS: ___ ILUSTRACIONES: ___ CD ROOM: 1

	Elaboró		Revisó	Aprobó	
Ec	quipo Operativo del Proceso	Proceso Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

MODELAMIENTO Y DISEÑO DE LA ESTRATEGIA DE CONTROL DE UNA CELDA ELECTROLÍTICA QUE PRODUCE OXIHIDRÓGENO COMO COMBUSTIBLE COMPLEMENTARIO

ERICK DANIEL RINCÓN CASTRILLO

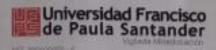
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIO DE INGENIERÍA ELECTROMECÁNICA SAN JOSÉ DE CÚCUTA

MODELAMIENTO Y DISEÑO DE LA ESTRATEGIA DE CONTROL DE UNA CELDA ELECTROLÍTICA QUE PRODUCE OXIHIDRÓGENO COMO COMBUSTIBLE COMPLEMENTARIO

ERICK DANIEL RINCÓN CASTRILLO

Proyecto de grado modalidad investigación presentado como requisito para optar por el título de ingeniero electromecánico.

DIRECTOR


M.Sc. I.E. JOSÉ RICARDO BERMÚDEZ SANTAELLA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIO DE INGENIERÍA ELECTROMECÁNICA

SAN JOSÉ DE CÚCUTA

ACTA DE SUSTENTACIÓN PROYECTO DE GRADO MODALIDAD TRABAJO DE GRADO INVESTIGATIVO

FECHA: 14 de junio de 2019

HORA: 04:30: P.M

LUGAR: Vicerrectoria de Investigación 3 Piso

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

TITULO DEL TRABAJO INVESTIGATIVO: "MODELAMIENTO Y DISEÑO DE LA ESTRATEGIA DE CONTROL DE UNA CELDA ELECTROLÍTICA QUE PRODUCE OXIHIDRÓGENO COMO COMBUSTIBLE COMPLEMENTARIO".

JURADOS

Mgs: JOSE RAFAEL EUGENIO LÓPEZ

Mgs. LUIS EMILIO VERA DUARTE

Esp.: JUAN CARLOS RAMIREZ BERMUDEZ

DIRECTOR:

Mgs: JOSE RICARDO BERMUDEZ SANTAELLA

LAUREADA

NOMBRE DEL ESTUDIANTE:

CÓDIGO

CALIFICACION

ERICK DANIEL RINCÓN CASTRILLO

1090927

5.0:

FIRMA DE LOS JURADOS:

VOBO. COORDINADOR COMITÉ CURRICULAR

Stanla IX.

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (067)(7) 5775655 - www.ulps.edu.co oficinadeprensa@ulps.edu.co Ban José de Cúcuta - Colombia

Chief or realized about \$20 to 1975

Resumen

Las celdas electrolíticas han impactado la industria automotriz, utilizándose para enriquecer motores a gasolina, y diesel con derivados de la electrólisis ($H_{\rm 2}$, $O_{\rm 2}$, y $H\!H\!O$), provocando una disminución en los gases de combustión (CO, y CO₂), en consecuencia, es necesario un estudio de los electrolizadores enfocado en el cambio de fase. En trabajo se presenta el modelo dinámico de una celda electrolítica seca comercial que produce oxihidrógeno con una capacidad máxima de 2,25 L/min, las ecuaciones se plantearon teniendo en cuenta las leyes de la termodinámica fundamental, relaciones empíricas de corriente – voltaje, también se ha desarrollado un modelo térmico por medio del balance de energía en el electrolizador que tiene en cuenta la energía aportada por el electrolito (KOH o NaHCO₃) contrario a los modelos encontrados en la literatura de electrolizadores. En la simulación se utilizó el software EES para determinar el valor de las variables termodinámicas (entalpía, entropía, y energía libre) que se ven afectadas por el aumento de temperatura en el cambio de fase (líquido a gas) del fluido de trabajo, las ecuaciones son simuladas en Matlab-Simulink®, se utilizó el método de Newton-Raphson para resolver las ecuaciones no lineales, y un Ajuste de Mínimos Cuadrados por el uso de las relaciones electroquímicas empíricas. Los datos experimentales corroboraron que, cuando aumenta la cantidad de electrolito suministrado, el paso de la corriente, la temperatura y el caudal de oxihidrógeno en la celda son directamente proporcionales a esta variación, este comportamiento fue predicho por la simulación.

Dedicatoria

A Dios por darme fortaleza en los momentos de dificultad, y poner personas en los momentos en donde necesité asesoría.

A mi madre Luz Castrillo, y mi padre Alfredo Rincón, quienes me han ayudado de forma incondicional no sólo en la realización de este proyecto, más bien durante toda mi vida.

A mi madrina Yasmith Castrillo por su amor brindado desde mi niñez, incluso en algunos momentos cumpliendo el rol de madre.

A cada uno de los compañeros con los que tuve la oportunidad de cursar materias, y compartir momentos de integración fuera de las aulas de clase.

Erick Daniel Rincón Castrillo

Agradecimientos

El autor expresa su agradecimiento a:

Al M.Sc. Ing. y director del proyecto José Ricardo Bermúdez Santaella por su apoyo en lo académico, investigativo, económico, y motivacional, hubiese sido muy difícil culminar esta etapa de mi vida sin su ayuda.

Al Ph.D. M.Sc. y Ing. Juan José García Pabón por cumplir el rol de mentor en mi proceso de formación como investigador.

Al M.Sc. y Ing. Rafael Eugenio por su disponibilidad en los momentos en que necesité de alguna asesoría o presentarle avances de este proyecto.

Al M.Sc. y Ing. Emilio Vera por mostrarse siempre atento en los momentos en que necesité presentarle avances de este proyecto.

A los integrantes de la Familia GIDPI con quienes tuve la oportunidad de compartir momentos de integración (asados, paseos, y ciclorruta), estos espacios son vitales para quienes nos estamos formando como investigadores; éxitos para Frank Blanco, Johans Becerra, Yeiner Carrillo, Neiber Herrera, Natalia Sepúlveda, Brian Pérez, Náthaly Patiño, Daniel Susa, Angie Chaya, Esneider Acevedo, y Lina Gutiérrez.

Contenido

In	atroducción		
1	Problen	na	25
	1.1 Tít	ulo	25
	1.2 Pla	nteamiento Del Problema	25
	1.3 For	mulación Del Problema	27
	1.4 Ob	jetivos	27
	1.4.1	Objetivo General	27
	1.4.2	Objetivos Específicos	28
	1.5 Jus	tificación	28
	1.5.1	Beneficios Tecnológicos	29
	1.5.2	Beneficios Institucionales	29
	1.5.3	Beneficios Científicos	30
	1.6 Alc	cances Y Limitaciones	30
	1.6.1	Alcances	30
	1.6.2	Limitaciones	30
	1.7 Del	limitaciones	31
	1.7.1	Delimitación Espacial	31
	1.7.2	Delimitación Temporal	31

1.	.7.3	Delimitación Conceptual	31
 Delimitación Conceptual Marco Referencial Antecedentes Marco Teórico Termodinámica Balance De Materia Y Energía Electroquímica Sensores Y Acondicionadores De Señal Control Automático Marco Conceptual Electrólisis Del Agua Celda Electrolítica 	32		
2.1	An	tecedentes	32
2.2	Ma	arco Teórico	34
2.	.2.1	Termodinámica	34
2.	.2.2	Balance De Materia Y Energía	35
2.	.2.3	Electroquímica	38
2.	.2.4	Sensores Y Acondicionadores De Señal	40
2.	.2.5	Control Automático	41
2.3	Ma	arco Conceptual	43
2.	.3.1	Electrólisis Del Agua	43
2.	.3.2	Celda Electrolítica	44
2.	.3.3	Electrolizador Alcalino	44
2.	.3.4	Electrolito	44
2.4	Ma	arco Contextual	44
2.5	Ma	arco Legal	45
2.	.5.1	Acuerdo 069/1997	45
2.	.5.2	Ley 697 De 2001 De Colombia	45
2.	.5.3	Ley 1715 De 2014 De Colombia	45
2.	.5.4	Convenio De Viena De 1980	45

2.5	5.5	Protocolo De Montreal De 1989	45
2.5	5.6	Protocolo De Kioto De 2005	45
2.5	5.7	Normas Ansi / Isa S 5.1- 1984 (R1992)	46
2.6	Glo	sario De Términos	46
2.6	5.1	Electrólisis Del Agua	46
2.6	5.2	Celda Electrolítica	46
2.6	5.3	Electrolizador Alcalino	46
2.6	5.4	Electrolito	47
2.6	5.5	Cátodo	47
2.6	5.6	Ánodo	47
2.6	5.7	Diafragma	47
2.6	5.8	Sobrevoltaje De Activación	47
2.6	5.9	Sobrevoltaje De Difusión	48
2.6	5.10	Sobrevoltaje Óhmico.	48
Dis	seño I	Metodológico	49
3.1	Tip	o De Investigación	49
3.2	Téc	nicas De Recolección De Datos	50
3.2	2.1	Fuentes Primarias	50
3.2	2.2	Fuentes Secundarias	50
3.3	Aná	álisis, Procesamiento De Datos Y Presentación De Resultados	51

3.3.1	Análisis	51
3.3.2	Procesamiento De Datos	51
3.3.3	Presentación De Resultados	51
3.4 Ac	tividades Y Metodología	51
3.4.1	Desarrollar El Modelo Matemático Que Describe El Funcionamiento De La	
Celda Ele	ectrolítica.	51
3.4.2	Realizar Las Simulaciones Del Comportamiento Dinámico De La Celda	
Electrolíti	ica A Través De La Herramienta Matlab-Simulink®.	52
3.4.3	Seleccionar El Electrolito Que Permita Hacer Más Eficiente La Producción D	e
Oxihidróg	geno Teniendo En Cuenta La Relación Costo Beneficio.	52
3.4.4	Seleccionar La Instrumentación Requerida Para El Proceso De Producción De	e
Oxihidróg	geno.	53
3.4.5	Diseñar La Estrategia De Control Adecuada Para La Óptima Producción De	
Oxihidróg	geno.	53
3.4.6	Diseñar La Interfaz De Monitoreo Y Adquisición De Datos Utilizando El	
Software	Labview.	54
4 Desarro	ollo Del Proyecto	55
4.1 De	escripción De La Planta	55
4.1.1	Descripción De Los Componentes	56
5 Modela	miento Dinámico De La Celda Electrolítica Para Producir Oxihidrógeno	58
5.1 Cla	asificación De Las Celdas De Combustible	58

5.1.1	Celdas De Combustible Alcalina (Afc)	59
5.1.2	Celdas De Combustible De Membrana De Intercambio Protónico (Pemfc)	60
5.1.3	Celdas De Combustible De Metanol Directo (Dmfc)	62
5.1.4	Celdas De Combustible De Ácido Fosfórico (Pafc)	63
5.1.5	Celdas De Combustible De Carbonato Fundido (Mcfc)	64
5.1.6	Celdas De Combustible De Óxido Sólido (Sofc)	65
5.2 T	Cipo De Modelo Dinámico Utilizado	66
5.3 F	Reacciones Químicas Y Teoría Iónica	67
5.3.1	Unidad De Cantidad De Electricidad	67
5.3.2	Corriente Eléctrica En Conductores Iónicos	69
5.4	Celda Electrolítica Alcalina	69
5.4.1	Principio De Funcionamiento	70
5.4.2	Modelo Matemático	71
Simu	lación Y Análisis De Resultados	86
6.1 I	Datos De La Simulación	86
6.2 S	simulación De La Celda Electrolítica	90
6.2.1	Cálculo De Las Variables Termodinámicas Por Medio Del Software Ees	91
6.2.2	Implementación Del Modelo En Simulink	92
6.3 F	Resultados De La Simulación Y Validación	102
Selec	ción Del Electrolito	110

8	Sele	cción De La Instrumentación	114
	8.1	Selección Del Sensor De Corriente	114
	8.2	Selección Del Sensor De Temperatura	119
9	Estra	ategia De Control	122
10	Di	seño De La Interfaz De Monitorización	127
	10.1	Reglas Para El Diseño De Interfaces	128
	10.2	Configuración De Los Sensores En La Daq Ni 6009	128
	10.3	Interfaz De Monitorización	130
11	Co	ostos	134
	11.1	Gastos En Equipos	134
	11.2	Gastos De Personal	135
12	Co	onclusiones	136
13	Di	vulgación Científica	138
	13.1	Apropiación Social Del Conocimiento	138
	13.1	.1 Evento Científico: III Simposio De Investigación En Ingeniería Y Desarrollo)
Ş	Sosten	ible Y La II Olimpiada De Robótica UFPS.	138
	13.1	.2 Evento Científico: V Encuentro Internacional De Innovación Tecnológica.	138
	13.1	.3 Evento Científico: 5th International Week Of Science, Technology &	
I	nnova	tion.139	
	13.1	.4 Evento Científico: Iii Encuentro De Semilleros De Investigación – UNAD.	140

13.2 Producto Generación De Nuevo Conocimiento		
13.2.1 Revista Especializada: Revista Colombiana De Tecnologías De Avanzada.	140	
14 Recomendaciones	142	
Referencias Bibliográficas	143	
Anexos	148	