

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Códi FO go SB-12/v0 Págin 1/1

ESQUEMA HOJA DE RESUMEN

RESUMEN TRABAJO DE GRADO

AUTOR(ES):			
NOMBRE(S):	JOSE LUIS	APELLIDOS:	MONTES BOHORQUEZ
NOMBRE(S):		APELLIDOS:	
FACULTAD: _	INGENIERÍA		
PLAN DE EST	UDIOS: INGENIERÍA I	ELECTROMECÁ	NICA
DIRECTOR:			
NOMBRE(S):	GLORIA ESMERALDA	APELLIDOS:	SANDOVAL MARTÍNEZ
CODIRECTOR			
NOMBRE(S):		APELLIDOS:	
TÍTULO DEL	TRABAJO (TESIS): DISE	ÑO DE SISTEM	A SCADA PARA LA PLANTA D
ASFALTO CO	NTRAFLUJO DE LA EM	IPRESA MAQIN	<u>TELIGENTE S.A.S. DE CÚCUTA</u>
NORTE DE SA	NTANDER.		

RESUMEN

Este proyecto realizó un diseño de sistema scada para la planta de asfalto contraflujo de la empresa Maqinteligente S.A.S. de Cúcuta, Norte de Santander. Para ello, se realizó una investigación cuantitativa la cual se caracterizó por la medición de fenómenos, se utilizaron estadísticas, prueba hipótesis y teoría basada en la recolección de datos por medio de procedimientos estandarizados representados mediante estadísticas y números. La recolección esta integrada por observaciones de forma directa a la planta de asfalto en contraflujo y de entrevistas informales a manera de conversación con Miguel Gómez Acevedo, tecnólogo en mantenimiento electrónico título obtenido en el 2005, él es operario a cargo de la planta. También se tuvo en cuenta investigaciones, libros, documentos, normas, tesis de grado, revistas y artículos de Internet, así como asesorías de profesionales con experiencia en la temática del proyecto. Se diseñó, un sistema de supervisión control y adquisición de datos (SCADA) para la planta de asfalto en contraflujo DT-120 de empresa Maqinteligente SAS de Cúcuta, Norte de Santander. Se identificaron las variables y el funcionamiento del proceso de la planta de asfalto en contraflujo DT-120. Posteriormente, se desarrolló la interfaz humana máquina para planta de asfalto DT 120 de Maqinteligentes S.A. Finalmente, se programó el autómata siemens S7200.

PALABRAS CLAVE: sistema SCADA, asfalto contraflujo, autómata siemens S7200.

CARACTERÍSTICAS:

PÁGINAS: 129 PLANOS: ILUSTRACIONES: CD ROOM: 1

Elaboró		Revisó		Aprobó	
Equ	ipo Operativo del Proceso	Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

COPIA NO CONTROLADA

DISEÑO DE SISTEMA SCADA PARA LA PLANTA DE ASFALTO CONTRAFLUJO DE LA EMPRESA MAQINTELIGENTE S.A.S. DE CÚCUTA, NORTE DE SANTANDER.

JOSE LUIS MONTES BOHORQUEZ

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS DE INGENIERÍA ELECTROMECÁNICA SAN JOSÉ CÚCUTA

DISEÑO DE SISTEMA SCADA PARA LA PLANTA DE ASFALTO CONTRAFLUJO DE LA EMPRESA MAQINTELIGENTE S.A.S. DE CÚCUTA, NORTE DE SANTANDER.

JOSE LUIS MONTES BOHORQUEZ

Trabajo de grado presentado como requisito para optar al título de Ingeniero Electromecánico

Director:

GLORIA ESMERALDA SANDOVAL MARTÍNEZ

Ingeniera Electromecánica

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA ELECTROMECÁNICA

SAN JOSÉ CÚCUTA

NIT. 890500622 - 6

ACTA DE SUSTENTACIÓN PROYECTO DE GRADO MODALIDAD TRABAJO DE GRADO DIRIGIDO

FECHA: 11 de abril de 2019

HORA: 04:00 PM

LUGAR: Sc 302

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

TITULO DEL TRABAJO DE "DISEÑO DE SISTEMA SCADA PARA LA PLANTA DE ASFALTO CONTRAFLUJO DE LA EMPRESA MAQUINTELIGENTE S.A.S DE CUCUTA, NORTE DE SANTANDER".

JURADOS

Msc. JUAN CARLOS RAMIREZ BERMUDEZ Dr. JOHNNY OMAR MEDINA DURAN

Msc. NORBEY CHINCHILLA HERRERA

DIRECTORA: Esp. GLORIA ESMERALDA SANDOVAL MARTINEZ

APROBADA

NOMBRE DEL ESTUDIANTE:

CÓDIGO

CALIFICACION

JOSE LUIS MONTES BOHÓRQUEZ

1090238

4.4

FIRMA DE LOS JURADOS:

VOBO. COORDINADOR COMITÉ CURRICULAR

Mayerline Ch.

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

Creada mediante decreto 323 de 1970

Contenido

	pág.
Introduccion	16
1. Problema	17
1.1 Título	17
1.2 Planteamiento del Problema	17
1.3 Formulación del Problema	20
1.4 Objetivos	20
1.4.1 Objetivo general	20
1.4.2 Objetivos específicos	20
1.5 Justificación	20
2. Marco Referencial	23
2.1 Antecedentes	23
2.2 Marco Teórico	24
2.2.1 Rio Zulia	24
2.2.2 Agregados pétreos	25
2.2.2.1 Consideraciones de empleo de los agregados pétreos	27
2.2.2.2 Clasificación del agregado pétreo de acuerdo a su tamaño	27
2.2.3 Manufactura	29
2.2.4 Maqinteligentes	29
2.2.5 Sistema de control automático	30
2.2.5.1 tipos de sistemas de control	32
2.2.5.2 Clasificaciones de los controles industriales	32
2.2.6 Autómata siemens S7-200	34

2.2.7 Sistema SCADA	35
2.2.8 Planta de asfalto en contra flujo	36
2.2.9 Mezclas asfálticas	38
2.2.9.1 clasificaciones de las mezclas asfálticas	38
2.3 Marco Conceptual	40
2.3.1 Automatización de procesos	40
2.3.2 Mezcla bituminosa	41
2.3.3 porcentaje de humedad de áridos	41
2.4 Marco Contextual	41
2.5 Marco Legal	41
3. Diseño Metodológico	43
3.1 Tipo de Investigación	43
3.2 Universo	43
3.3 Técnica de Recolección de Datos	44
3.3.1 Información primaria.44	
3.3.2 Información secundaria	44
4. Planta de Asfalto en Contra Flujo dt-120	45
4.1 Características de la Planta Asfalto Dt-120	45
4.2 Proceso de la Planta de Asfalto Dt-120	47
4.2.1 Subproceso 1: dosificación de áridos	49
4.2.1.1 Sistema del subproceso 1, dosificación de áridos	51
4.2.1.2 Elementos del subproceso 1, dosificación de áridos	53
4.2.2 Subproceso 2: Lanzamiento de agregados pétreos.	59
4.2.2.1 Sistema del subproceso 2, lanzamiento de agregados pétreos	59

4.2.2.2 elementos del subproceso 2, lanzamiento de agregados pétreos	60
4.2.3 Subproceso 3: secado de áridos	61
4.2.3.1 actividad 1 del subproceso 3, de eliminación del porcentaje de	
humedad de los áridos	62
4.2.3.2 Actividad 2 del subproceso 3, recolección de vapor y polvo	68
4.2.3.3 actividad 3 del subproceso 3, distribución uniforme del agregado	70
4.2.4 Subproceso 4: mezclador	72
4.2.4.1 Actividad 1 del subproceso 4, calentamiento de CAP	73
4.2.4.2 Actividad 2 del subproceso 4, retorno del agregado fino	77
4.2.4.3 Actividad 3 del subproceso 4, mezclado	80
4.2.5 Subproceso 5: elevador de mezcla asfáltica	82
4.2.5.1 Sistema del subproceso 5, elevador de mezcla asfáltica	82
4.2.5.2 elementos del subproceso 5, mezclado	82
5. Scada para Planta del Asfalto dt120	83
5.1 Scada Actual de la Planta de Asfalto	83
5.1.1 Software usado SCADA de la planta de asfalto DT120	83
5.1.2 Protocolo de comunicación	84
5.1.3 Manejo se datos	84
5.1.4 Interfaz humano maquina	85
5.2 Valoracion del Scada Actual	85
5.3 Diseño del Scada	86
5.3.1 Actualización de la interfaz humano máquina	86
5.3.1.1 Modificación del ingreso del SCADA	88

5.3.1.2 Modificación de la pantalla principal, agregar nueva casilla para	
porcentaje de humedad	89
5.3.1.1 Modificaciones del ingreso del SCADA, agregar una gráfica del	
quemador	90
5.3.2 Actualización del control del quemador.91	
5.3.2.1 Sistema de control del quemador que implementa planta de asfalto	94
5.3.2.2 Comparativo de las propiedades físico químicas de los	
combustibles	96
5.3.2.2 Sintonización del control	109
5.3.3 Actualización del proceso de producción de la planta de asfalto	112
5.3.4 costos de la actualización de la planta de asfalto DT120	114
6. Conclusiones	116
Referencias Bibliográficas	118
Anexos	120